
Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 1

I M P U L S E
Portable Graphics Engine

AlphaMask, Inc.
March 1, 2000

Overview

Impulse is a cross-platform graphics engine, capable of rendering high quality graphics on
PCs, Macs, Unix, and Embedded systems. It is written entirely in C++, though its API can
easily be wrapped in C functions for use by C-only clients.

Impulse runs well on popular systems (PC, Mac, Unix), but it has minimal knowledge of
the host OS. Access to the file system (for disk-based Fonts) and simple memory allocation
is all that is required. Font support is a separate module within Impulse, and can be
replaced with custom modules, making it very easy to port to custom OS environments.

This document is intended as an introduction to Impulse. It describes the major classes
available in the API, and how they work together. To help organize the classes and
concepts, this document breaks the process of drawing into three elements.

♦ Device: This is where the drawing takes place, typically a bitmap (either the screen or
an offscreen buffer), but it can be simply a redirection for recording the drawing into a
stream, a postscript file, or a redirection for computing bounding boxes or performing
hit-testing. The device also contains a view stack consisting of a matrices and clips.

♦ Attribute: This object is a collection of all the drawing attributes that affect the color
and style of the drawing. It contains flags for antialiasing and filtering, and fields for
frame size, text font and size, and special effects like gradients, blurs, extrudes.

♦ Primitive: This is the actual object being drawn. Impulse supports 3 classes of
drawing primitives: Geometric (lines, rectangles, paths), Bitmap, and Text. Other
common shapes (oval, round-rect, arc) can easily be constructed using paths.

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 2

GEOMETRY

Coordinates

Impulse is a device-independent graphics engine. This means that drawing primitives are
specified in ideal or local space (fractional values), and may be transformed (scaled,
rotated, etc) before they are used to draw something on the device (in device or pixel
space). Impulse coordinates have X increasing from left to right, and Y increasing from top
to bottom. The top-left corner of a device defaults to (0, 0).

Impulse can be conditionally compiled to use or not use floating point numbers. To
facilitate this, all Impulse coordinates use the type hsScalar, denoting a 32bit fractional
value that may be a float or a 16.16 fixed.

typedef Int32 hsFixed; // 16.16
#define hsFixed1 (1 << 16)

#if HS_SCALAR_IS_FLOAT
 typedef float hsScalar;
 #define hsScalar1 float(1)
#else
 typedef hsFixed hsScalar;
 #define hsScalar hsFixed1
#endif

Some operations with hsScalars can be performed directly in C, such as assignment,
addition/subtraction, comparison, as well as some (but not all) operations with integers.

hsScalar a, b, c, d;

a = b + c - d;
if (a > b) c = d;

a = b * 3; // legal
a = b / 3; // legal
a = b + 3; // ILLEGAL! Must use a = b + hsIntToScalar(3)
a = 3; // ILLEGAL! Must use a = hsIntToScalar(3)

However, other operations require macros to insure that the operations work correctly with
either version of hsScalar: e.g. multiplication/division, conversion to and from integers.

hsScalar a, b, c;
int i;

a = hsIntToScalar(i);
a = hsScalarMul(b, c); // b * c
a = hsScalarDiv(b, c); // b / c
i = hsScalarRound(a); // rounds
i = hsScalarToInt(a); // truncates

These types and macros are found in hsFixedTypes.h and hsScalar.h

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 3

Points and Rectangles

Points consist of two values: X and Y. Impulse defines a scalar point as hsPoint2, and an
integer point as hsIntPoint2 (defined in hsPoint2.h).

struct hsPoint2 {
 hsScalar fX, fY;
};

struct hsIntPoint2 {
 Int32 fX, fY;
};

Rectangles consist of four values: Left, Top, Right, Bottom. Impulse defines a scalar rect
as hsRect, and an integer rect as hsIntRect (in hsRect.h).

struct hsRect {
 hsScalar fLeft, fTop, fRight, fBottom;
};

struct hsIntRect {
 Int32 fLeft, fTop, fRight, fBottom;
};

For a rectangle to be valid, fLeft <= fRight and fTop <= fBottom.

Rects can be used as a drawing primitive, and they can also (along with Paths) be used as a
clip.

Matrices

All geometric transformations (translate, scale, rotate, etc.) are specified with matrices.
Impulse defines a 3x3 matrix using hsScalars.

struct hsMatrix33 {
 hsScalar fMap[3][3];
};

While the client may set the values for fMap directly, there are a host of methods designed
to help you with this.

Reset();
SetTranslate(hsScalar dx, hsScalar dy);
SetScale(hsScalar scaleX, hsScalar scaleY,
 hsScalar pivotX, hsScalar pivotY);
SetRotate(hsScalar angle,
 hsScalar pivotX, hsScalar pivotY);
SetSkew(hsScalar skewX, hsScalar skewY,
 hsScalar pivotX, hsScalar pivotY);

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 4

These Set_ methods initialize the matrix to the state specified by the parameters.

NOTE: The pivot parameters specify what coordinate should be left unchanged by the
matrix. For example, to rotate about the point P, use SetRotate(degrees, P.fX, P.fY).

Translate(hsScalar dx, hsScalar dy);
Scale(hsScalar scaleX, hsScalar scaleY,
 hsScalar pivotX, hsScalar pivotY);
Rotate(hsScalar angle,
 hsScalar pivotX, hsScalar pivotY);
Skew(hsScalar skewX, hsScalar skewY,
 hsScalar pivotX, hsScalar pivotY);

All of these methods modify the matrix by the specified parameters. Thus, they should not
be called on an uninitialized matrix.

To concatenate two matrices together, use SetConcat. This produces a matrix that applies
both transformations at once. NOTE: The order of the matrices is important. The resulting
matrix effectly applies the second matrix and then the first.

SetConcat(const hsMatrix33* matrixA,
 const hsMatrix33* matrixB);

// For example

hsMatrix33 a, b, c;

a.SetScale(hsIntToScalar(3), hsIntToScalar(3), 0, 0);
b.SetTranslate(hsIntToScalar(10), hsIntToScalar(20));

c.SetConcat(&a, &b); // c will translate and then scale
c.SetConcat(&b, &a); // c will scale and then translate

Paths

Paths are opaque objects, used to store geometry more complex than just a rectangle. Paths
can contain multiple contours, and each contour can be made up of any number of line and
curve segments. The curve segments in a path are cubic beziers.

class hsPath;

A path is created by making method calls to add lines and curves.

void MoveTo(const hsPoint2& pt);
void LineTo(const hsPoint2& pt);
void CurveTo(const hsPoint2& pt0, const hsPoint2& p1,
 const hsPoint2& p2);
void Close(); // close the current contour

There are no methods for deleting segments within a path. However, you can clear the
entire path using Reset().

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 5

void Reset();
hsBool IsEmpty() const;

Paths can be drawn using either the even-odd (EO) rule, or the winding rule. This is
specified in the path with the kEOFill_PathFlag. Paths default to winding fill (flags == 0).

enum {
 kEOFill_PathFlag = 0x01
};

UInt32 GetFlags() const;
void SetFlags(UInt32 flags);

Paths have helper methods for adding common shapes as contours.

void AddRect(const hsRect* rect);
void AddPoly(int count, const hsPoint2 pts[]);
void AddPath(const hsPath* path);
void AddOval(const hsRect* oval);
void AddCircle(hsScalar cX, hsScalar cY, hsScalar radius);
void AddRRect(const hsRect* r, hsScalar w, hsScalar h);
void AddArc(const hsRect* r, hsScalar startAngle,
 hsScalar sweepAngle, hsBool wedge);

Paths can return their bounds (as a rectangle), and be transformed by a matrix.

void GetBounds(hsRect* bounds, hsBool exact) const;
void Transform(const hsMatrix33* matrix);
void Translate(hsScalar dx, hsScalar dy);

Paths can be used as a drawing primitive, and they can also (along with Rects) be used as a
clip.

PathIterator

Since paths are opaque, Impulse provides an iterator for retrieving the data inside.

class hsPathIterator {
public:
 hsPathIterator(const hsPath* path,
 hsBool forceClosed);

 hsPath::Verb Next(hsPoint2 pts[4]);
};

The Next() method is called in a loop, until it returns kDone_PathVerb. The interpretation
of the pts[] parameter depends on the return value.

Verb returned from Next() Pts[] assigned
kDone_PathVerb none
kMoveTo_PathVerb pts[0]

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 6

kLineTo_PathVerb pts[0..1]
kCurveTo_PathVerb pts[0..3]
kClose_PathVerb none

Example:

hsPathIterator iter(&path);
hsPath::Verb verb;
hsPoint2 pts[4];

while ((verb = iter.Next(pts)) != hsPath::kDone_PathVerb)
{
 switch (verb) {
 case hsPath::kMoveTo_PathVerb:
 // pts[0] begins a new contour
 break;
 case hsPath::kLineTo_PathVerb:
 // pts[0..1] are a line segment
 break;
 case hsPath::kCurveTo_PathVerb:
 // pts[0…3] are a bezier segment
 break;
 case hsPath::kClose_PathVerb:
 // marks the current contour closed
 break;
}

Bitmaps

While a bitmap isn’t exactly geometry, it does represent the structure and dimensions of a
drawing primitive, so it is discussed here.

class hsGBitmap {
public:
 enum Config {
 kNoConfig,
 kARGB32Config,
 kRGB32Config,
 k555Config,
 kIndex8Config,
 kAlpha8Config
 };
 enum {
 kOddFieldFlag = 0x01,
 kEvenFieldFlag = 0x02
 };

 hsGBitmap();
 ~hsGBitmap();

 void* fImage;
 UInt32 fWidth, fHeight, fRowBytes;

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 7

 Config GetConfig() const;
 void SetConfig(Config config);

 UInt32 GetFlags() const;
 void SetFlags(UInt32 flags);

 hsGColorTable* GetColorTable() const;
 void SetColorTable(hsGColorTable* ctable);

 unsigned GetPixelSize() const;
};

A hsGBitmap does not own the memory for the pixels, but merely points to it. It is the
responsibility of the client to manage the pixel memory. The fields of a bitmap are:

♦ fImage: Points to the memory for the pixels.
♦ fWidth, fHeight: Dimensions of the bitmap.
♦ fRowBytes: The number of bytes between subsequent rows of pixels.

Bitmaps are oriented top-to-bottom. Thus the first pixel pointed to by fImage corresponds
to the top-left corner of the bitmap.

The color-table class is a descendent of hsRefCnt, and is used with kIndex8Config to map
8-bit indices (the pixel values) to colors.

NOTE: Impulse treats 32-bit pixels with alpha as premultiplied colors. This means that
within each pixel, the RGB components are stored already scaled by their alpha
component. This applies to bitmaps that are drawn as primitives, as well as the result of
Impulse drawing into a bitmap.

Color 32-bit format [ARGB]
Black [0xFF 0 0 0]
White [0xFF 0xFF 0xFF 0xFF]
Red [0xFF 0xFF 0 0]
50% Translucent Red [0x80 0x80 0 0]
Transparent [0 0 0 0]

A rule of thumb for premultiplied colors: all color components must be <= the alpha
component.

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 8

ATTRIBUTES

RefCnt

class hsGAttribute : public hsRefCnt;

The hsGAttribute object is derived from hsRefCnt. This allows the attribute object to
be safely referenced by multiple objects.

class hsRefCnt {
 Int32 fRefCnt;
public:
 hsRefCnt() : fRefCnt(1) {}
 virtual ~hsRefcnt();

 virtual void Ref();
 virtual void UnRef();
};

When a hsRefCnt object is created, its private counter is initialized to 1. Each time Ref()
is called, the counter is incremented. Each time UnRef() is called, the counter is
decremented. If the counter gets to 0, then the object is deleted. It is an error to explicitly
delete a hsRefCnt object whose counter is > 1.

NOTES:

For the following sections, enums and methods will be listed without the hsGAttribute::
prefix, but they are all defined inside the hsGAttribute class (see hsGAttribute.h).

All of the Set… methods return a boolean value indicating whether the method actually
changed the setting. If the specified value is the same as the one already in the attribute, the
method returns FALSE, else the setting is changed and the method returns TRUE.

Attribute Flags

Attribute flags specify various options for modifying a drawing. The default setting is a
value of 0.

enum {
 kAntiAlias = 0x01,
 kFrame = 0x02,
 kFilterBitmap = 0x04,
 kSquarePen = 0x08,
 kKernText = 0x10,
 kSubPixelText = 0x20,
 kLinearMetricsText = 0x40,
 kLinearContourText = 0x80
};

UInt32 GetFlags() const;
hsBool SetFlags(UInt32 flags);

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 9

Changing the value of kFrame may be done quite often. To accommodate this, two helper
methods are available.

hsBool SetFillMode(); // clear the kFrame bit
hsBool SetFrameMode(); // set the kFrame bit

Attribute Color

Color is specified in 16-bit component ARGB, represented by hsGColor. For alpha, 0
specifies transparent, and 0xFFFF specifies opaque. There is a single color in the attribute,
and it applies to all primitives (line, rectangle, path, text) except for bitmaps, which only
respect the color's alpha value.

typedef UInt16 hsGColorValue;

struct hsGColor {
 hsGColorValue fA, fR, fG, fB;
};

void GetColor(hsGColor* color) const;
hsBool SetColor(const hsGColor* color);
hsBool SetARGB(hsGColorValue alpha, hsGColorValue red,
 hsGColorValue green, hsGColorValue blue);

Along with the color, two other objects can affect the color of the resulting image.
hsGShader is a client-specified object that supplies per-pixel colors. It is called for each
scanline of the primitive being drawn. hsGXferMode also is called per scanline, and is
responsible for compositing the source colors onto the device. Each of these objects are
optional, and may be nil.

class hsGShader : public hsRefCnt;
class hsGXferMode : public hsRefCnt;

hsGShader* GetShader() const;
hsBool SetShader(hsGShader* shader);

hsGXferMode* GetXferMode() const;
hsBool SetXferMode(hsGXferMode* mode);

hsGShaders and hsGXferModes are derived from hsRefCnt, and are therefore reference
counted. SetShader() and SetXferMode() automatically call Ref() on the new object (if it is
not nil), and call UnRef() on the previous object (if it is not nil). GetShader() and
GetXferMode() do not change the object’s reference count.

Example:

hsGShader* shader = new MyShader();

// shader’s refcnt is now 1
state->SetShader(shader);
// shader’s refcnt is now 2

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 10

shader->UnRef();
// shader’s refcnt is now 1
(void)state->GetShader();
// shader’s refcnt is still 1
state->SetShader(nil);
// shader is now deleted, since its refcnt went to 0

For special effects such as blurring or embossing, the client may provide a subclass of
hsGMaskFilter. This object, when present, is called to modify the alpha mask of a
drawing primitive. Like hsGShader and hsGXferMode, the hsGMaskFilter is reference
counted.

class hsGMaskFilter : public hsRefCnt;

hsGMaskFilter* GetMaskFilter() const;
hsBool SetMaskFilter(hsGMaskFilter* filter);

Attribute Framing

Geometric primitives can be draw filled or framed (stroked). If they are framed (kFrame bit
is set), then the following fields apply.

enum CapType { kButtCap, kRoundCap, kSquareCap };
enum JoinType { kMiterJoin, kRoundJoin, kBluntJoin };

hsScalar GetFrameSize() const;
hsBool SetFrameSize(hsScalar size);

CapTyp GetCapType() const;
hsBool SetCapType(CapType captype);

JoinType GetJoinType() const;
hsBool SetJoinType(JoinType jointype);

hsScalar GetMiterLimit() const;
hsBool SetMiterLImit(hsScalar limit);

hsScalar GetMinWidth() const;
hsBool SetMinWidth(hsScalar minWidth);

The interpretation for FrameSize, CapType, JoinType and MiterLimit is the same as in
PostScript. MinWidth allows the client to set the minimum size (in pixels) for a framed
geometry. This is be used to keep very thin lines from disappearing when they are scaled
down. If MinWidth is set to 0 (its default), no minimum thickness is enforced.

Clients may modify the geometry at draw time by providing a subclass of
hsGPathEffect. This object is passed the original geometry, and may return a new one.
Like hsGShaders, hsGXferModes, and hsGMaskFilters, this class is reference counted.

class hsGPathEffect : public hsRefCnt;

hsGPathEffect* GetPathEffect() const;

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 11

hsBool SetPathEffect(hsGPathEffect* effect);

Clients may also override the scan conversion process by providing a subclass of
hsGRasterizer. This object is passed a path, and returns an alpha mask. This object is
reference counted like hsGShaders, hsGXferModes, hsGMaskFilters, and
hsGPathEffects.

class hsGRasterizer : public hsRefCnt;

hsGRasterizer* GetRasterizer() const;
hsBool SetRasterizer(hsGRasterizer* raster);

Attribute Text

Attributes for text include font, size, encoding, algorithmic styles, and spacing.

enum TextEncoding {
 kAsciiEncoding,
 kUTF8Encoding,
 kUnicodeEncoding
};

TextEncoding GetTextEncoding() const;
hsBool SetTextEncoding(TextEncoding encoding);

The text encoding identifies what kind of character codes are passed to drawing and
measuring methods. ASCII specifies that all character codes are 1-byte. UTF8 specifies
that the characters require a variable number of bytes. Unicode specifies that each character
is 16-bits.

typedef UInt32 hsGFontID;

hsGFontID GetFontID() const;
hsBool SetFontID(hsGFontID fontID);

Fonts are identified by a 32-bit font ID. These IDs are obtained using the hsGFontList
methods. A value of 0 specifies that the default font should be used.

hsScalar GetTextSize() const;
hsBool SetTextSize(hsScalar textSize);

The text size specifies the size of the text (to be modified by the matrix and optional
TextFace). Note that the size is an hsScalar, and may be a fractional value (e.g. 12.75).

These next two attributes (textface and textspacing) are optional structs. The Get methods
return a boolean indicating if the attribute has the value. To clear the value, pass nil to the
Set method.

struct hsGTextSpacing {
 enum {
 // trim spaces when justified
 kTrimJustText = 0x01

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 12

 };
 UInt32 fFlags;
 hsScalar fAlignment; // < 0 means full justified
 hsScalar fSpaceExtra; // ignore if fAlignment < 0
 hsScalar fCharExtra; // ignore if fAlignment < 0
};

hsBool GetTextSpacing(hsGTextSpacing* spacing) const;
hsBool SetTextSpacing(const hsGTextSpacing* spacing);

hsGTextSpacing allows the client to override the character spacing and alignment when
drawn using DrawGlyphs. fAlignment specifies a continuum between left (0), center (0.5)
and right (1) alignment. If alignment is < 0, then its absolute value is interpreted as a width,
and the text spacing is automatically adjusted to fit the text within that width. If alignment
>= 0, then fSpaceExtra and fCharExtra are added to their respective characters. If the
hsGTextSpacing field is nil (the default), text is drawn left-aligned.

The default setting for an attribute is no hsGTextSpacing. In this case, GetTextSpacing()
returns false, and does not modify the face parameter. To reset the attribute to its default
state, pass nil to SetTextSpacing().

struct hsGTextFace {
 hsScalar fBoldness; // default hsScalar1
 hsScalar fSkew; // default 0
 hsScalar fXScale; // default hsScalar1
 hsScalar fXOffset; // default 0
 hsScalar fOutlineWidth; // default 0
 hsScalar fUnderlineThickness; // default 0
 hsScalar fUnderlineOffset; // default 0
};

hsBool GetTextFace(hsGTextFace* face) const;
hsBool SetTextFace(const hsGTextFace* face);

hsGTextFace allows the client to modify the size and shape of the text. fBoldness
specifies algorithmic emboldening. fSkew and fXScale combine to create a matrix that
modifies the shape of the text. fXOffset adds itself to each character’s advance width.
fOutlineWidth specifies the thickness of outline text (a value of 0 means normal text).
Underline thickness and offset specify where to draw an underline.

The default setting for attribute is no hsGTextFace. In this case, GetTextFace() returns
false, and does not modify the face parameter. To reset the attribute to its default state, pass
nil to SetTextFace().

Attribute Text Measure

MeasureGlyphs returns the width of a string, and returns the line height in two optional
parameters. The character codes in the text parameter are interpreted based on the current
TextEncoding.

hsScalar MeasureText(UInt32 length, const void* text,

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 13

 hsPoint2* ascent, hsPoint2* descent);

Ascent and descent are points, so that MeasureText can return information about the angle
of the text as well. The Y component of ascent and descent indicates the line height (above
and below the baseline), and the X component reflects the italic angle (if any). For normal
upright text, the X component is 0.

GetTextWidths returns an array of widths for each character in a string. The method returns
the number of characters processed, base on the current TextEncoding. For
kAsciiEncoding, the return value == length. For kUnicodeEncoding, the return value ==
length/2. For kUTF8Encoding, the value depends on the actual characters in the text.

int GetTextWidths(UInt32 length, const void* text,
 hsScalar widths[]);

GetTextPath converts the text into a path containing the outlines of all the characters.

void GetTextPath(UInt32 length, const void* text,
 hsPath* path);

GetTextPath returns the path scaled by the text-size (and any TextFace scaling), and filters
it through the attributes PathEffect (if any).

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 14

DEVICE

The base class for all drawing devices is hsGDevice.

class hsGDevice : public hsRefCnt {
public:
 virtual void Save();
 virtual void Restore();

 virtual void Concat(const hsMatrix33* matrix);
 virtual void ClipPath(const hsPath* path);
 virtual hsMatrix33* GetTotalMatrix(hsMatrix33* matrix);
 virtual void PushInto(hsGDevice* target) const;

 // The draw methods do nothing, but rely on
 // subclasses to provide the functionality

 virtual void DrawFull(hsGAttribute* attr);
 virtual void DrawLine(const hsPoint2* start,
 const hsPoint2* stop,
 hsGAttribute* attr);
 virtual void DrawRect(const hsRect* rect,
 hsGAttribute* attr);
 virtual void DrawPath(const hsPath* path,
 hsGAttribute* attr);
 virtual void DrawBitmap(const hsGBitmap* b,
 hsScalar x, hsScalar y,
 hsGAttribute* attr);
 virtual void DrawParamText(UInt32 length,
 const void* text,
 hsScalar x, hsScalar y,
 hsGAttribute* attr);
 virtual void DrawPosText(UInt32 length,
 const void* text,
 const hsPoint2 pos[],
 const hsPoint2 tan[],
 hsGAttribute* attr);
};

Device View Stack

The device maintains an internal stack of matrices and clips (views). These affect all
primitives drawn into the device. A new "view" is pushed onto the stack when Save() is
called. It is initialized to an identity matrix and an unrestricted clip. This new view can be
modified: the matrix is changed using Concat(), and the clip is augmented by using
ClipPath(). To pop the current view off the stack, call Restore().

Example:

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 15

device->DrawRect(&rect, &attr);
device->Save();
// now there is another view on the stack
device->Rotate(hsIntToScalar(30), 0, 0);
device->DrawRect(&rect, &attr);
// now the rect is rotated 30 degress about (0,0)
path.AddOval(&rect);
device->ClipPath(&path);
device->DrawRect(&rect, &attr);
// now the rect draws through an oval clip
device->Restore();
// now the device is back to its original view state

There are helper methods for manipulating the matrix and clip.

// balance with one call to Restore()

void ClipRect(const hsRect* rect);

void Translate(hsScalar dx, hsScalar dy);
void Scale(hsScalar sx, hsScalar sy,
 hsScalar px, hsScalar py);
void Rotate(hsScalar degrees, hsScalar px, hsScalar py);
void Skew(hsScalar sx, hsScalar sy,
 hsScalar px, hsScalar py);

PushInto() is used to transfer the entire view stack from the source device. This is useful
when you want to replicate the drawing from one device into another. Internally, this is
done by first calling Save(), and then concatenating all of the matrices and clips from
source. To restore the device to its state before the PushInto() call, only one call to
Restore() is needed.

ClipRect() is a utility method for creating a rectangular path, and clipping with it.
Internally, the code looks something like the following:

void hsGDevice::ClipRect(const hsRect* rect)
{
 if (rect != nil)
 {
 hsPath path;

 path.AddRect(rect);
 this->ClipPath(&path);
 }
}

Internally, Impulse detects paths that are rectangular, and uses them as such for efficiency.

Translate(), Scale(), Rotate(), Skew() and Concat() methods should look familiar. They are
similar to the methods on hsMatrix33, except that on a Device, they premultiply the device
matrix (are applied before the rest of the Device matrix), where as the hsMatrix33 methods
postmultiply, applying their change after the original matrix.

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 16

Device TotalMatrix

The device method GetMatrix() returns only the current matrix for the view on the top of
the stack. This is the matrix you are allow to modify. However, when a primitive is drawn,
it is transformed by the concatenation of all of the matrices in the stack. This concatenated
matrix is called the TotalMatrix. The TotalMatrix cannot be modified, but may be retrieved.
It is useful for mapping (transforming) points into device space (pixel space in the case of a
hsGRasterDevice).

hsMatrix33* GetTotalMatrix(hsMatrix33* matrix);
void MapPoints(int count, const hsPoint2 src[],
 hsPoint2 dst[]);
void MapRect(const hsRect* src, hsRect* dst);

GetTotalMatrix() returns the parameter it is passed, not the actual total matrix. This allows
the following usage.

hsMatrix33 matrix;

device->GetTotalMatrix(&matrix)->MapPoints(4, src, dst);

MapPoints() can accept src[] and dst[] being the same array. MapRect returns in dst the
bounds of the transformed src rectangle in the case the TotalMatrix involves more than just
translation and scaling.

Sometimes it is helpful to perform the inverse operation: mapping points (and vectors) from
device coordinates back through the TotalMatrix. This can be done by calling
GetTotalMatrix() and then inverting the matrix, or using the following helper methods:

hsBool GetTotalInverse(hsMatrix33* inverse);
hsBool InvertPoints(int count, const hsPoint2 src[],
 hsPoint2 dst[]);
hsBool InvertRect(const hsRect* src, hsRect* dst);

These inverse methods return a boolean value, indicating their success or failure. If the
device's total matrix is non-invertible, these methods return false and do not modify their
parameters.

Device Subclasses

Impulse provides several basic subclass of hsGDevice, overriding the above Draw_
methods.
♦ hsGRasterDevice: This subclass renders into a bitmap. The client can provide the

memory for the bitmap, or the class can allocate it.
♦ hsGOffscreenDevice: This subclass of hsGRasterDevice manages creating a

platform-specific offscreen bitmap, and offers easy methods for copying it onto the
screen.

♦ hsGStreamDevice: This subclass captures the drawing commands and writes them
into a stream for later playback.

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 17

♦ hsGPostScriptDevice: This subclass captures the drawing commands and translates
them into PostScript commands, ignoring those features of Impulse that are not
supported in PostScript.

♦ hsGHitTestDevice: This subclass provides a device that tests whether a given point
or rectangle intersects any of the primitives drawn into it.

Impulse also provides helper classes based around hsGDevice
♦ hsGBounder: This class provides a device that returns the bounds of any primitives

drawn into it.
♦ hsGStreamPlayback: This class takes the drawing commands previously recorded

by hsGStreamDevice into a stream, and replays them into another device.

hsGRasterDevice

To draw into a bitmap, use hsGRasterDevice (or its descendant hsGOffscreenDevice).

class hsGRasterDevice : public hsGDevice {
public:
 HSScanHandler* GetHandler() const;
 virtual void SetHandler(HSScanHandler* handler);

 void GetOrigin(hsIntPoint2* origin);
 virtual void SetOrigin(int x, int y);

 hsGBitmap* GetPixels(hsGBitmap* pixels) const;
 virtual void SetPixels(const hsGBitmap* pixels);

 hsIntRect* GetBounds(hsIntRect* bounds) const;
 void SetBounds(const hsIntRect* bounds,
 unsigned bitDepth);

 virtual void Erase(const hsGColor* color);

 // overrides of the draw methods
};

HSScanHandler is an optional object that the raster device can reference. If the device
references one, it is called with the device-space (transformed into device coordinates)
primitive before it is drawn. If the handler returns TRUE, then drawing continues. If the
handler returns FALSE, then nothing is drawn. This can be used to accumulate the bounds
of objects being drawn, or to hide a cursor.

SetOrigin() affects the device's total matrix by apply a translate after all other transforms
have been applied.

Call SetPixels() to give the device the bitmap it should draw into. If the fImage field of the
bitmap is set to nil, then the device will allocate the memory for the bitmap (based on its
width, height, pixel-size). If this is done, then the device will manage deleting that memory

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 18

when either the device is destroyed, or another to call to SetPixels() is made. Calling
GetPixels() returns a bitmap whose fImage field reflects either the memory specified at the
SetPixels() call, or the memory allocated by the device. It also calls SetOrigin() with the
top-left of the bounds.

SetBounds() is a helper method. It takes a bounding rectangle and constructs a bitmap
based on it and the specified bitDepth. In turn, it calls SetPixels() with a bitmap whose
fImage field is nil, forcing the device to allocate the memory.

Erase() fills the device's bitmap with the specified color (including alpha). This method
does not call any of the virtual Draw methods, but writes to the pixels directly, ignoring the
matrix or clip.

Raster Drawing

The methods DrawLine(), DrawRect(), and DrawPath() operate in the following manner.

1. Prepare the geometry for scan conversion

1.1. Apply the hsGPathEffect (if any) from the attribute.

1.2. Stroke the geometry (if kFrame is specified by the attribute).

1.3. Apply the total-matrix to the geometry, transforming it into device space.

2. Scan convert the geometry into an alpha mask, clipped to the bounds of the stack of
device clips.

2.1. Use the hsGRasterizer (if any) from the attribute, going from a geometry to a
mask.

2.2. Apply the hsGMaskFilter (if any) from the attribute, generating another mask.

3. Blit the mask into the pixels using the color from the attribute, clipped to the stack of
device clips.

3.1. Use the hsGShader (if any) from the attribute to obtain the colors (modified by the
attribute's color's alpha).

3.2. Use the hsGXferMode (if any) from the attribute to blend the colors with the
device's pixels.

DrawBitmap() draws the bitmap primitive with its top-left corner specified by the X and Y
parameters. The bitmap respects the specified matrix and clip, and the attribute’s color's
alpha, and optional hsGXferMode. If the device's matrix causes the bitmap to be scaled,
rotated, or otherwise transformed when it is drawn, then Impulse looks at the
kFilterBitmap flag in the attribute. Filtering generally generates better results, but runs
slower.

DrawParamText() and DrawPosText() offer two different ways to specify where to draw
text. DrawParamText() just specifies the starting location, and relies on the spacing
information in the font (and the optional hsGTextFace and hsGTextSpace fields of the
attribute) to determine where to draw the characters. DrawPosText() specifies the position
of each character (and optionally a tangent for each character). Both methods use the font
and text size from the attribute.

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 19

hsGOffscreenDevice

class hsGOffscreenDevice : public hsGRasterDevice {
public:
 hsOffscreen fOffscreen;

 void SetSize(int width, int height, int depth);
 void CopyToScreen(int dx, int dy);
 };

This subclass of hsGRasterDevice creates an offscreen object to use as the pixels. How this
is done depends on the host OS.
♦ Windows: the offscreen creates a HDC, and the CopyToScreen() method calls

StretchDIBits() or SetDIBitsToDevice().
♦ Macintosh: the offscreen creates a Gworld, and the CopyToScreen() method uses

CopyBits().

hsGStreamDevice

class hsGStreamDevice : public hsGDevice {
public:
 void StartRecording(hsStream* outStream);
 void StopRecording();

 // Overrides of the draw methods from hsGDevice
};

This device does not render anything, but instead records all of the drawing, matrix and
clip calls into the stream object the caller provides (see hsStream.h). The resulting stream is
completely self-contained, and can be copied or written to disk. To replay the drawing,
simply pass the stream to a hsGStreamPlayback object.

class hsGStreamPlayback {
public:
 hsGStreamPlayback(hsRegistry* registry);

 void Playback(hsStream* inStream, hsGDevice* target);
};

The optional hsRegistry object passed to the construct allows any flattened subclasses to be
reanimated during playback. The file hsGRegisterAll.h declares a function that registers all
of the features provided with Impulse (gradient shaders, dashing path-effects, etc.).

Example:

void DrawStream(hsStream* inStream, hsGDevice* target)
{
 hsRegistry registry;
 hsGStreamPlayback player(®istry);

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 20

 hsGRegisterAll(®istry);

 playback.Playback(inStream, target);
}

The target device can be any subclass of hsGDevice, including another stream device. You
may pass nil for the constructor of the hsGStreamPlayback, in which case any subclassed
objects embedded in the stream will be ignored.

hsGPostScriptDevice

class hsGPostScriptDevice : public hsGDevice {
public:
 void SetPaperSize(int width, int height);
 void SetPageBounds(const hsIntRect* margins);

 void StartDoc(FILE* target);
 void StartPage();
 void EndPage();
 void EndDoc();

 // Overrides of the Draw methods from hsGDevice
};

The hsGPostScriptDevice, like hsGStreamDevice, captures all drawing commands into (in
this case) a file. However, this device converts these commands into their PostScript
equivalents. It ignores those Impulse features that have no corresponding feature in
PostScript: hsGRasterizer, hsGMaskFilter, hsGShader, hsGXferMode. In addition, it does
not offer any font-downloading services. It is up to the client to insure that any fonts
needed will be available on the printer.

NOTE: This is an experimental class, and not all features are fully implemented.

hsGHitTestDevice

The hsGHitTestDevice class provides for pixel-accurate hit testing. It does this by storing a
target rectangle in device (pixel) coordinates. Any drawing performed on the device will not
render, but will set a flag as to whether its pixels intersected the target rectangle.

class hsGHitTestDevice {
public:
 hsGHitTestDevice(const hsIntRect* target,
 hsBool respectAlpha);
 virtual ~hsGHitTestDevice();

 void Reset();
 hsBool IsHit() const;
};

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 21

The target rectangle (specified by the client) is expressed in device coordinates. To specify
a single point at (X,Y), pass the rectangle (X, Y, X+1, Y+1). Any drawing directed to this
device will not render, but will be tested against the target rectangle. Once one primitive
intersects the target rectangle, the IsHit() method will return true. Calling Reset() sets the
IsHit() flag back to FALSE.

hsGDevice Utilities

The following classes are not subclasses of hsGDevice, but do create devices internally and
offer functionality based on hsGDevice.

hsGBounder

The hsGBounder class provides a mechanism for calculating the bounds of one or drawing
primitive. Note that this bounds can vary greatly from just the bounds of the primitive’s
geometry, for there are many factors that affect the bounds…
♦ Framing (stroking) adds to the bounds. In the simplest case, 1/2 of the frame size is

added to each side of the bounds, but miter joins (if they are selected in the attribute)
can extend the bounds even further.

♦ The device’s matrix can transform the geometry, affecting its bounds.
♦ The optional objects hsGPathEffect, hsGRasterizer, hsGMaskFilter can all modify the

drawing of a primitive such that its bounds differ from the geometry. Note that
hsGShader and hsGXferMode objects cannot affect the size of the drawn primitive,
only what color(s) it is drawn in.

class hsGBounder {
public:
 hsGDevice* GetDevice();

 void Reset();
 hsBool GetBounds(hsIntRect* bounds);
};

GetDevice() returns a private device object. Any drawing directed to this device will not
appear anywhere, but will its bounds will be accumulated by the bounder object. Calling
Reset() reinitializes the bounder’s accumulater rectangle, so the same bounder object can be
used to compute the bounds of different primitives. Notice that GetBounds() returns a
boolean, and returns the resulting bounds (if bounds != nil) as an integer rectangle. This is
the device coordinate bounds of the primtive(s) that were drawn into the device returned by
GetDevice(). If GetBounds() returns false, then no primitive was drawn into the device (or
if one was, it was clipped out).

Example usage:

class Shape {
public:
 virtual void Draw(hsGDevice* device) = 0;

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 22

 hsBool Bounds(hsIntRect* bounds);
};

hsBool Shape::Bounds(hsIntRect* bounds)
{
 hsGBounder bounder;

 this->Draw(bounder.GetDevice());

 return bounder.GetBounds(bounds);
}

This example assumes the the Shape class has subclasses that define the Draw() method for
various types of shapes. Each shape subclass knows how to draw itself into a device. The
Bounds() method is not virtual, and need only be implemented by the base class, since it
can create a bounder device and pass that to the Shape’s virtual Draw() method. Whatever
the subclass draws will get accumulated by the bounder’s device, and returned when
GetBounds() is called.

We can add hit-testing to our example.

class Shape {
public:
 …
 hsBool HitTest(int x, int y);
};

hsBool Shape::HitTest(int x, int y)
{
 hsIntRect target;

 target.Set(x, y, x + 1, y + 1);

 hsGHitTestDevice tester(&target, true);

 this->Draw(&tester);

 return tester.IsHit();
}

