vV M L ABS

Puffin:
A Debugger For

B3 A

N U 0O N

Copyright O 1997-1999 VM Labs, Inc. All rights reserved.

Nuon™, Nuon Media Architecture™, and the E logo are trademarks of VM
Labs, Inc.

Proprietary and Confidential to VM Labs, Inc.

The information contained in this document is confidential and proprietary to
VM Labs, Inc., and is provided pursuant to a Non-Disclosure agreement
between VM Labs, Inc., and the recipient. It may not be distributed or
copied in any form whatsoever without the express written permission of VM
Labs.

The information in this document is preliminary and subject to change at any
time. VM Labs reserves the right to make changes to any information
described in this document.

Note: This document is continually updated to reflect the current state of the
Nuon development system hardware and software. If you have a version
that is more than five or six months old, it is likely out of date.

Please address comments or report errors to Mike Fulton at VM Labs
(mfulton@vmlabs.com).

VM Labs, Inc.
520 San Antonio Road
Mountain View, CA 94040

Tel: (650) 917-8050
Fax: (650) 917-8052

Table of Contents

1. INTRODUCTION.....ccosrriririrerereresesesesesesesesesesesesesesssesesesesssssesssessssssssssssnssenes 1-1
L1 USBOB. ittt e bbb e e 11
1.2 Environment Variables........ccooeinnnecirnece e 1-1

121 MD_PORT ..ottt 1-1
122 MD_LOGFILE ...ttt 1-1
1.2.3 PUFFIN_PATH ..ottt 1-2
1.3 User Customization FIlES.........cociinrnieeirireee e 1-2
131 USERLSP .ottt 1-2
13.2 USERZK.LSP ...ttt 1-2
1.4 Global Variables.......oceiiirieirreerer e 1-3
141 MMP @N0 &Mt 1-3
14.2 FMPE& AN & oo 1-3
143 & PO, &PL, & P2, AN & P3...eiiiiirieirerrieere e 1-3
15 Customizable Global Variables.........cooeiiiiiinnnecseereeeseee 1-3
151 *STEP-OVER-INTERRUPTS ... 1-3
15.2 *DETECT-CONFLICTSEooiisrerererereresesesesesesesesesesesesesesesesesesenenes 1-4
153 *DISPLAY-WARNINGSEcooerererererereresesesesesesesesesesesesesesesesssesenenes 1-4
154 FDISPLAY-INFOX ..o esesenenenenen 1-4

2. DEBUGGING FUNCTIONS.......cociiitririeireeeisiesssessss s 2-1

2.1 SEECE A PrOCESSONccierieueererietee sttt isbe e sttt sssbeneneseas 2-1
2.1.1 Sl BCE - PrOCESSON ot 2-1
2.2 FileLoading FUNCLIONS........ccoeioririneiererieiee st 2-1
2.2.1 [oad-debug-fil @ . 2-1
2.2.2 [0ad- source-fil . 2-1
2.2.3 | oad- and-run-source-fil e . 2-2
2.2.4 | 0ad- 0obj eCt - T il €. 2-2
2.2.5 | oad- and-run-object-fil e . 2-3
2.2.6 [0ad- SYMDOI S e 2-3
2.2.7 [oad-bi nary-fil . 2-3
2.2.8 Set-SOoUrCe-PAL N s 2-4
2.3 Execution Control FUNCLIONSccieirinieienerieieeresie e neens 2-4
2.3.1 U o PSSP USSP 2-4
2.3.2 LS =T o OSSO PR UTRTTTRT 2-4
2.3.3 ST P OVEI ittt 2-4
2.3.4 LS 0] o OSSO PR UTSTTTRTN 2-4
2.3.5 FEST AN e e 2-4
2.4 Breakpoint FUNCLIONS........ccoiiuiiireee ettt 2-5

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE IlI

2.4.1 S D et e 2-5
2.4.2 Cl AN DP e 2-5
2.4.3 SNOWDP s 2-5

2.5 WECh FUNCLIONS......ccuiieeeeeeetecteete ettt st sttt sr e e 2-5
2.5.1 wat Ch SYNMDO! e 2-5
2.5.2 Wat Ch- ChanNQe ... 2-6
2.5.3 UNWALE Chleceeeeeeee ettt 2-6
2.5.4 define-bitfiel da s 2-6
2.6 BefOre/After MEthOOS.......ccoooveieeeeeeeeeee et 2-7
2.6.1 DT OF © e 2-7
2.6.2 FEeNMDVE- DET OF € e 2-7
2.6.3 AT T BT e 2-7
2.6.4 FENMDVE- Af L BF e 2-8

2.7 Image OULPUL FUNCLIONS......cccoueuiiririeiee et 2-8
2.7.1 WE T T €1 IMBOE it 2-8
2.7.2 WET T @-T AW | MAGE oot 2-8
2.8 Miscalaneous FUNCLIONS.........cccoeeiecieiieceeeecteeere ettt 2-8
2.8.1 Ai SASSENMDI € e 2-8
2.8.2 (0 11 T2 ¢ o T 2-9
2.8.3 FUNT T MB- BVAL et 2-9
2.8.4 FiNd-SYMDOl 2-9

3. THE DEBUGGING ARCHITECTURE ..ottt 31
4, THE CHIP ABSTRACTIONoooiiciistieete ettt st 4-1
A1 C-MMP CIBSS....ccociitiiitieee ettt sttt s bbb snenas 4-1
41.1 Global VariablES ..ot 4-1
412 MELNOAS ...ttt e e 4-1

A O V1 = @ R 4-4
42.1 Global VariablES ... 4-4
422 MELNOAS ...ttt s 4-4
4.2.3 Execution Control Methods...........cccecveeieiiecieceeieeceeseecreceesee e 4-8
424 Breakpoint Methods. ..o 4-9
425 Object File ACCESS MEthOOS..........cueireririeeeririeee e 4-11

4.3 C-REGISTER CIESS.....cocciiteictiieetiseesee sttt essbessssssaessssensans 4-14
43.1 MELNOAS ..ottt s st 4-14

4.4 C-BREAKPOINT ClaSS....ccoveiriviitiieisieiesteseete st essressssssaessssensns 4-14
44.1 MELNOAS ..ottt bbb s st 4-15

B, UTILITY FUNCTIONS ...ttt sttt sttt nebesrene 5-1
5.1 Fixed Point Math Operations........cocceererieienererinieie e seseseneneens 5-1
6. DELETED INFORMATION FROM HERE ON! ..o 6-1
6.1.1 Emulator-Only MethodSccoviionneerrereereris e 6-1

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE IV

6.1.2 Other MisC MEthOAS.......ccoiiireer e 6-3

6.1.3 Emulator Only Methods ..o 6-5

6.2 BASIC-VECTOR-REGISTER CI&SS.......ccouiuririririeireresieisisensisiesseseneees 6-6

6.2.1 MELNOAS......ceceeteectrre bbb 6-6

6.3 VECTOR-REGISTER CIESS.......covniieeiririieinirenesisinesesis s sessees 6-6

6.3.1 MELNOAS......ceceiect bbb 6-7

6.4 VECTOR-IO-REGISTER ClSS......cccuueiririeiririreneisieiresesie s sseseseees 6-7

6.4.1 MELNOAS......cecectrecect bbb 6-7

6.5 ACCUMULATOR CIESS.....coriiurerirerineieiriresisisisessssssssesessssssssesssssessssssssess 6-7

6.5.1 Emulator Only Methods.........ccovreinrinenrreereris e 6-7

7. THE DEBUGGER ABSTRACTIONcoiiiirireneirrenesie e 7-1

7.1 DEBUGGER Cl8SS......ccotiuririiurinirenesisisesesisisisessssssssesesssssssessssssssssssssens 7-1

711 Global Variables..........cciiirr e 7-1

7.12 MELNOAS. ...t 7-1

7.2 MPE-DEBUGGER CI@SS......ccoctriririieinirieisisnenesis e sessees 7-2

721 Global Variables.........cooiinnnerr e 7-2

7.2.2 MELNOAS......cecectreect bbb 7-2

7.2.3 Emulator Only Methods ..o 7-5
5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE V

This page intentionally left blank.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE VI

1. Introduction

Puffin is a programmable debugger for the Nuon Architecture. It supports the
standard debugger features of breakpoints and single stepping a ong with powerful
features like before and after methods. Puffin uses a scripting language called
XLISP which issimilar to the programming language Scheme.

1.1 Usage

There are two versions of Puffin, one with a GUI interface and one with a command
line interface. The GUI version of Puffinis called Puffin2K, The command line
version is called simply Puffin. When you invoke either version from the command
line, you can supply optional arguments. These arguments should be the names of
files you want loaded. The files should contain debugger scripts (XLI1SP code).

1.2 Environment Variables

Puffin uses some environment variables to control its execution. Y ou should set
these variables before invoking Puffin.

1.2.1 MD_PORT

If you are debugging a Nuon hardware system, you should set the environment
variable MD_PORT to the IP address of the Nuon hardware system. For example:

set MD_PORT=192.1.1.226

Thisvariableisaso used by other toolsin the Nuon SDK.

1.2.2 MD_LOGFILE

This environment variable is mostly used to debug Puffin itself. Set it to the name of
afileif you want logging information about TCP/IP requests and responses sent to
the Nuon hardware written into the file.

For example:

set MD_LOGFI LE=npacket . | og

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 1-1

Note: Do not set this variable unless you really need the resulting log file. Writing
to the log can slow down debugger operations and in particular downloads
significantly.

1.2.3 PUFFIN_PATH

Itisn't necessary to set thisvariable if you have installed the Puffin debugger along
with the rest of the Nuon SDK and are using the standard paths relative to the
directory specified by the VML ABS environment variable.

If you want to place the XLISP files (PUFFIN.LSP, MMP.LSP, MPE.LSP, etc.) in
different directories from those used by the standard distribution, set this
environment variable to a path where these files can be found. For example:

set PUFFI N_PATH=d: \wor k\ I i sp; d: \ wor k\ ot her

This directs Puffin to search for XLISP filesin the specified directories in the order
inwhich they are listed.

1.3 User Customization Files

Y ou can customize the behavior of Puffin using one of the user customization files
described below. Thesefiles are automatically loaded by Puffin during startup and
can override the default settings of Puffin global variables.

1.3.1 USER.LSP

The USER.LSP fileisloaded by both Puffin and Puffin2K. Y ou should placein
USER.L SP any customizations that you want to apply to both the command line and
GUI versions of Puffin.

1.3.2 USER2K.LSP

The USER2K.LSP fileisloaded only by Puffin2K. Y ou should placein
USER2K.LSP any customizations that you want to apply only to Puffin2k.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 1-2

1.4 Global Variables

1.4.1 MMP and &m

The variable *MMP* isaways bound to an instance of the C-MMP class. The
variable & mis ashorthand for *MMP*.

1.4.2 *MPE& and &p

The variable * MPE* is always bound to the instance of C-MPE corresponding to the
currently selected MPE. The variable & p is a shorthand for * MPE*. Within a before
or after method or within the conditional expression of a conditional breakpoint,
these variables are temporarily rebound to the instance of C-MPE associated with
the MPE that has reached the associated breakpoint.

1.4.3 &p0, &pl, &p2, and &p3
Thevariables & p0, & pl, & p2 and & p3 are bound to the corresponding M PEs.

1.5 Customizable Global Variables

Puffin uses some global variables within its scripting language to control the
debugger operation. Y ou can override the values of any of these variables by placing
the appropriate commandsin your USER.LSP or GUI-USER.LSPfilesor ina
debugger script files. Y ou can also temporarily override avariable by typing the
appropriate command at the command prompt in Puffin or in the listener window in
Puffin2K.

1.5.1 *STEP-OVER-INTERRUPTS*

When * step-over-interrupts* is set to #t (which it is by default), Puffin attempts to
step over the execution of the interrupt service routine of any interrupt that occurs
during single stepping. To disable stepping over interrupts, set thisvariable to #f.

To enable stepping over interrupts:
(set! *step-over-interrupts* #t)
To disable stepping over interrupts:

(set! *step-over-interrupts* #f)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 1-3

1.5.2 *DETECT-CONFLICTS*

When * detect-conflicts® is set to #t (which it is by default), Puffin halts and displays
an error message when it detects a conflict within an instruction packet. Set this
variable to #f to ignore conflicts.

1.5.3 *DISPLAY-WARNINGS*

When *display-warnings* is set to #t (which it is by default), Puffin will display
warnings produced by LLAMA (which it uses to assemble source files during the
load process). To suppress the display of warnings, set this variable to #f.

1.5.4 *DISPLAY-INFO*

When *display-info* is set to#t (which it is by default), Puffin will display
informational messages produced by LLAMA (which it uses to assemble source
files during the load process). To suppress the display of informational messages,
set this variable to #f.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 1-4

2. Debugging Functions

2.1 Select A Processor

2.1.1 sel ect-processor

(sel ect -processor i)

Selects the specified processor in the specified debugger. This changes the binding
of the variables *mpe* and & p to the new MPE.

2.2 File Loading Functions

2.2.1 | oad-debug-file

(1 oad-debug-file fil enane)

Load afile containing XL1SP code. Thisfile usually contains commandsto initialize
a debugging session including selecting processors and loading source or object
files. It can a so be used to setup watch variables and breakpoints as well asto
define functions needed for the current debugging session.

2.2.2 |l oad-source-file

(1 oad-source-file filenanme &key processor ignore-
before-after? use-fast-|oader? | oad-debuggi ng-i nfo?
| oad-code? initialize? run?)

L oad Nuon source code into the mpe associated with the debugger.
:processor selectsthe target mpe. The default is &p.

:ignor e-befor e-after ? should be set to #t to ignore before and after methods. Its
default value is#f.

:use-fast-loader ? should be set to #t to use the fast loader. The fast loader uses a
helper program that it loads into the mpe being loaded. It only really speeds up
loading into SDRAM or system ram. If you are only loading on-chip memory,
it is probably faster to set this parameter to #f. The default is#t.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-1

:load-debugging-info? should be set to #t to load debugging information
(symbols and line numbers). Y ou can set it to #f if you just want to load the
code and don't care about debugging. The default is#t.

:load-code? should be set to #t to load code and data. Y ou can set it to #f if you
just want to load debugging information. The default is#t.

‘initialize? should be set to #t to initialize the program for debugging. When this
parameter is set to #t, the debugger sets a breakpoint at the first instruction of
the program and runs until it hits the breakpoint. This has the effect of loading
the instruction pipeline and setting pcexec to the start address of the program.
If :initialize? is set to #f, the program isloaded and its start addressis placed
in pcfetch. The default is#t.

:run? should be set to #t to automatically start running after loading the object
file. If ;run?is set to #f, the object fileisloaded but not started. The default is
#f.

Note: This function used to be called mload.

2.2.3 | oad-and-run-source-file

(1 oad-source-file filename &key processor ignore-
before-after? use-fast-|oader? | oad-debuggi ng-i nfo?
| oad- code?)

Assemble, load, and start running Nuon source code. This function does the same
thing as the load-sour ce-file function with the :run? parameter set to #t.

2.2.4 | oad-object-file

(1 oad-object-file fil ename &key processor ignore-
before-after? use-fast-|oader? | oad-debuggi ng-i nfo?
| oad-code? initialize? run?)

Load Nuon object file (either a.cof file or an .mpo file) into the mpe associated
with the debugger.

:processor selectsthe target mpe. The default is &p.

:ignor e-befor e-after ? should be set to #t to ignore before and after methods. Its
default value is#f.

:use-fast-loader? should be set to #t to use the fast loader. The fast loader uses a
helper program that it loads into the MPE being loaded. It only really speeds

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-2

up loading into SDRAM or system ram. If you are only loading on-chip
memory, it is probably faster to set this parameter to #f. The default is#t.

:load-debugging-info? should be set to #t to load debugging information
(symbols and line numbers). Y ou can set it to #f if you just want to load the
code and don't care about debugging. The default is#t.

:load-code? should be set to #t to load code and data. Y ou can set it to #f if you
just want to load debugging information. The default is#t.

‘initialize? should be set to #t to initialize the program for debugging. When this
parameter is set to #t, the debugger sets a breakpoint at the first instruction of
the program and runs until it hits the breakpoint. This has the effect of loading
the instruction pipeline and setting pcexec to the start address of the program.
If :initialize? is set to #f, the program isloaded and its start addressis placed
in pcfetch. The default is#t.

:run? should be set to #t to automatically start running after loading the object
file. If ;run?is set to #f, the object fileisloaded but not started. The default is
#f.

2.2.5 | oad-and-run-object-file

(1 oad-object-file filename &key processor ignore-
before-after? use-fast-|oader? | oad-debuggi ng-info?)

Load and start running a Nuon object file. Thisfunction does the same thing asthe
load-abject-file function with the :run? parameter set to #t

2.2.6 | oad-synbol s

(1 oad-synmbol s fil enane &key processor)

L oad the symbols and line numbers from a Nuon object file for use with the
specified MPE.

. processor selectsthetarget MPE. The default is&p.

2.2.7 | oad-binary-file

(1 oad-binary-file addr fil enane)
Load abinary file at the specified address MPE associated with the debugger.

Note: This function used to be called bload.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-3

2.2.8 set-source-path

(set-source-path! path &optional debugger)

Sets the path the debugger uses to find sourcefiles. The path should bein the form
of alist of strings naming directories where files are to be found. The directory
separator should be the forward dlash (/) even on Windows 95/98 systems. The
debugger defaultsto &d.

2.3 Execution Control Functions

2.3.1 run

(run &optional processor)

Start the MPE running. The processor defaultsto &d.

2.3.2 step

(step &optional processor)

Single step the MPE. The processor defaultsto &d.

2.3.3 step-over

(step-over &optional processor)

Single step the MPE, stepping over subroutine calls. The processor defaultsto &d.

2.3.4 stop

(stop &optional processor)

Stop the MPE. The processor defaultsto &d.

2.3.5 restart

(restart)

Re-initializes the MM P and rel oads the last program loaded into an MPE or the last
debugger file loaded.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-4

2.4 Breakpoint Functions

2.4.1 setbp
(setbp addr &key condition)

Set a breakpoint at the specified addresses in the currently selected processor. If the
condition keyword parameter is specified, it should be an expression that returns
true (any value other than #f) if execution should stop and #f if it should continue
without stopping. Puffin will evaluate the expression when the breakpoint is
encountered and will stop if the expression evaluates to true. If the expression
evaluates to #f, Puffin will automatically continue without stopping.

Within the expression, the names of registers are bound to their associated register
objects. In addition, the symbol & p isbound to the MPE object.

For example:
(setbp "loop" :condition "(< (rl 'value) 2)))

Thiswill bresk at the label "loop" if the value of rl islessthan 2.

2.4.2 clearbp
(cl earbp addr..)

Clear breakpoints at the specified addressesin the currently selected processor.

2.4.3 showbp
(showbp)

Show all active breakpoints in the currently selected processor.

2.5 Watch Functions

2.5.1 wat ch synbol

(wat ch synbol &key format popup-format frachits count
| ocal ? use-cache? indirect?)

Setup to watch the specified variable. Returns an id for the watch request.

Watch keyword parameters:

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-5

:format one of 'hex, 'binary, 'decimal, 'real or 'ascii (default is

'hex)

‘popup-format the name of abitfield format defined with define-bitfield
(no default)

:frachits number of bitsin the fractional part of a'real or 'binary
value (default is 0)

:count number of elementsin an array of values (default is 1)

:local? use the mpe memory map if #t and the global memory
map if #f (default is#t)

:use-cache? look through the data cache if #t (default is#f)

sindirect? treat the value as a pointer and display the value pointed

to (default is #f)

2.5.2 wat ch- change

(wat ch-change id &ey format popup-format frachits
count | ocal ? use-cache? indirect?)

Changes the settings of an existing watch request. The keywords are the same asin
the watch function above.

2.5.3 unwat ch

(unwat ch id)

Remove the watch request with the specified id.

2.5.4 define-bitfield

(define-bitfield name &rest fields)

Define anamed bitfield definition to be used with the :popup-format parameter to
the watch function. Each field isa string of the form:

"<|abel>.<start-bit>:<end-bit>.<format>"

where <label> isathe label that will appear to the left of thefield value in the
popup, <start-bit> isthe bit number of the start of the field, <end> is the bit number
of the end of the field and <format> is a printf style format string for displaying the
field. For example:

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-6

(define-bitfield "my_bitfield"
"this.0:1. %"
"that.2:3. %"
"ot her.4:31.%")

This defines abitfield definition called "my_bitfield" that consists of threefield
definitons. Thefirst hasthelabel "this" and starts with bit 0 and endswith bit 1. It is
displayed with the format %d which converts the value to decimal. The second field
hasthe label "that" and starts with bit 2 and ends with bit 3. It is displayed with the
format %x which converts the value to hexadecimal.

2.6 Before/After Methods

2.6.1 before
(before addr &rest body)

Establishes a before method at the specified address. When execution reaches the
specified address, the code in the body of the before method is executed before the
instruction at that address is executed.

For example:
(before #x80001000
(if (< (r0 "value) 0)
(format #t "~%R0 has gone negativel!")))

Thiswill establish abefore method at the address $80001000 that tests the value of
r0O and displays a message in the console window if the value of r0 isless than zero.

Within the expression, the names of registers are bound to their associated register
objects. In addition, the symbol & p is bound to the MPE object.

2.6.2 renpve-before

(renove- before addr)

Remove the before method at the specified address.

2.6.3 after
(after addr &rest body)

Establishes an after method at the specified address. When execution reaches the
specified address, the code in the body of the after method is executed after the

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-7

instruction at that addressis executed. This function is analogous to the before
function above except that the code is executed after the instruction at the specified
address.

2.6.4 renpve-after

(renove-after addr)

Remove the after method at the specified address.

2.7 Image Output Functions

2.7.1 wite-i mage

(write-image nane &optional x-size y-size &ey base
node npe)

Write an image from display memory to a.PCX bitmap imagefile.

The x-size and y-size parameters default to the display height and width. The base
defaults to the start of external ram and the mode defaults to * display-mode* .

2.7.2 wite-rawi mage

(write-raw-i mage name &optional x-size y-size &key
base node npe)

Write an image from display memory to a.PCX bitmap imagefile.

The x-size and y-size parameters default to the display height and width. The base
defaults to the start of external ram and the mode defaults to * display-mode* .

This function differs from write-image in that no color space conversionis
performed; the Y component of colorsis written into the green channel of the
output image, Cr into thered, and Cb into the blue.

2.8 Miscellaneous Functions

2.8.1 di sassenbl e

(di sassenbl e addr count &key port processor)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-8

Disassemble instructionsin the selected processor starting at the specified address.
The port defaults to * standard-output* . The processor defaultsto &p.

2.8.2 dunp

(dunp &optional processor)

Dump the registers of the specified MPE. The processor defaultsto & p.

2.8.3 runti me-eval

(runtine-eval expr &optional processor)

Evaluate the specified expression in the processor context. Thisinclude bindings
for *mpe* and &p aswell asfor each processor register (e.g. r0, rl, mdmacptr, etc.).

2.8.4 find-synbol

(find-synmbol pname &optional processor)
Find the value of the named symbol. The processor defaultsto &p

See also the definition of the find-symbol method of C-MPE.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-9

This page intentionally left blank.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-10

3. The Debugging Architecture

Puffin supports debugging Nuon programs by providing an abstraction of the Nuon
processor. This abstraction is presented in the form of XLISP classes. This set of
classes is separated into two major categories:

The Chip Abstraction

The Debugger Abstraction

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 3-1

This page intentionally left blank.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 3-2

4. The Chip Abstraction

The chip abstraction consists of the classes MMP and MPE.

4.1 C-MMP Class

The C-MMP classis an abstraction of the entire Nuon chip. Puffin only supports a
single instance of the C-MMP class.

4.1.1 Global Variables

mmp isaways set to the only instance of C-MMP

& m isasynonym for *mmp*.

4.1.2 Methods

4.1.2.1 npe- count
(c-mmmp ‘ npe-count)
Returns the number of MPEs associated with this C-MMP. For example:

(&m ' nmpe-count)
2 4

4.1.2.2 npe
(c-mp “npe i)
Returns the ith MPE associated with this C-MMP. For example:
(&m*‘mpe?2)
= #<MPE-2>

4.1.2.3 fetch-scal ar
(c-nmm ' fetch-scal ar addr)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-1

Returns the scalar at the specified addressin MMP memory. MPE memory appears
aswith aDMA transfer with the REMOTE bit set.

4.1.2. 4 st ore-scal ar
(c-mmp 'store-scalar! addr val ue)

Stores the specified value into the specified addressin MMP memory. MPE
memory appears aswith a DMA transfer with the REMOTE bit set.

4,.1.2.5 read-scal ars-fromfile

(c-nmmp 'read-scalars-fromfile addr count
&opti onal port)

Reads scalars from the specified input port and writes them to the specified address.
The data should be in binary form in Nuon (big-endian) byte order.

4.1.2.6 wite-scalars-to-file

(c-nmmp 'write-scalars-to-file addr count
&opti onal port)

Reads scalars from the specified address and writes them to the specified output
port. The datawill bein binary form in Nuon (big-endian) byte order.

4.1.2.7 chip
(c-nmmp 'start)

Returns#t if running on areal chip. It returns # when running under the emulator
(which is not present in thisrelease).

4.1.2.8 run-all
(c-nmm 'run-all)

Start all MPEs running. Each MPE will execute instructions when the MMPis
clocked. When debugging on actua hardware, the MMP is aways being clocked.

4.1.2.9 st op-all
(c-nmm 'stop-all)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-2

Stop all MPEs from running.

4.1.2.10 reset
(c-nmm 'reset &key keep- breakpoi nts?)

Reset the MMP. If keep-breakpoints?is#t (which it is by default), all breakpoints
areretained. If keep-breakpoints?is#f, all breakpoints are removed.

4.1.2.11 restart
(c-nmm 'restart &key keep-breakpoints?)

Reset the MM P and keep breakpoints based on the setting of keep-breakpoints? (see
the 'reset method). After resetting the MMP, reload the last object file or the last
debugger file that was |oaded.

4.1.2.12 sel ect - processor
(c-nmmp 'sel ect-processor i)

Select the specified MPE making it the default MPE and binding it to the symbols
mpe and &p.

4.1.2.13 write-image-to-file

(c-nmmmp 'write-imge-to-file name &optional x-size
y-si ze &key base node)

Write an image from display memory to a.PCX file.

The x-size and y-size parameters default to the display height and width. The base
defaults to the start of SDRAM and the mode defaults to * display-mode* .

4.1.2.14 write-rawinmage-to-file

(c-nmmp 'wite-rawimage-to-file nane &optional x-size
y-si ze &key base node)

Write an image from display memory to a.pcx file. The x-size and y-size parameters
default to the display height and width. The base defaultsto the start of SDRAM

and the mode defaults to * display-mode* . This method differs from write-image-to-
filein that no color space conversion is performed; the Y component of colorsis

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-3

written into the green channel of the output image, Cr into the red, and Cb into the
blue.

4.2 C-MPE Class

The C-MPE classis an abstraction of asingle Nuon Processing Element (MPE).
Thereis one instance of C-MPE for each MPE on the chip or emulated chip being
debugged. The currently selected instance of C-MPE is bound to the variables & p
and *mpe*.

4.2.1 Global Variables

mpe isalways set to the currently selected instance of C-MPE

& p isasynonym for &P

4.2.2 Methods

4.2.2.1 mp
(c-npe ' mmp)
Returns the MMP that contains this MPE.

4.2.2.2 uni t - nunber
(c-npe '
Returns the MPE unit number.

uni t - nunber)

4.2.2.3 sel ect
(c-npe 'select)

Select this MPE setting the global variables * mpe* and &p.
4.2.2. 4 pc

(c-nmpe ' pc)

Return the current value of pcexec for this MPE.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-4

4.2.2.5 fp
(c-npe ' fp)
Return the current value of the C frame pointer (r30) for this MPE.

4.2.2.6 fetch-scal ar
(c-npe 'fetch-scal ar addr)

Returns the scalar at the specified addressin MPE memory.

4.2.2.7 f et ch- dat a- scal ar
(c-npe 'fetch-data-scal ar addr)

Returns the scalar at the specified address in MPE memory |ooking through the data
cache.

4.2.2.8 fetch-instruction-scal ar
(c-npe 'fetch-instruction-scal ar addr)

Returnsthe scalar at the specified addressin MPE memory looking through the
instruction cache.

4.2.2.9 st ore-scal ar
(c-npe 'store-scalar! addr val ue)

Stores the specified value into the specified addressin MPE RAM.

4.2.2.10 st or e- dat a- scal ar
(c-npe 'store-data-scal ar! addr val ue)

Stores the specified value into the specified addressin MPE RAM looking through
the data cache.

4.2.2.11 store-instruction-scal ar
(c-npe 'store-instruction-scal ar! addr val ue)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-5

Stores the specified value into the specified addressin MPE RAM looking through
theinstruction cache.

4.2.2.12 read-scal ars-fromfile
(c-npe 'read-scalars-fromfile addr count port)

Reads scalars from the specified input port and writes them to the specified address.
The data should be in binary form in Nuon (big-endian) byte order.

4.2.2.13 wite-scalars-to-file
(c-npe "wite-scalars-to-file addr count port)

Reads scalars from the specified address and writes them to the specified output
port. The datawill be in binary form in Nuon (big-endian) byte order.

4.2.2.14 transl at e- dat a- addr ess
(c-npe 'transl at e-dat a- address addr)

Return the address in the data cache where the specified addressis mapped. If the
specified addressis not in the data cache, return #f.

4.2.2.15 transl ate-i nstructi on-address
(c-npe 'translate-instructi on-address addr)

Return the address in the instruction cache where the specified address is mapped. If
the specified address is not in the instruction cache, return #f.

4.2.2.16 set -source-path
(c-npe 'set-source-path! path)

Sets the path the debugger uses to find sourcefiles. The path should bein the form
of alist of strings naming directories where files are to be found. The directory
separator should be the forward dash (/) even on Windows 95/98 systems.

4.2.2.17 di sassenbl e
(c-npe 'disassenbl e addr count &optional port)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-6

Disassemble instructions starting at the specified address. Instructions are
disassembled and printed to the specified port until count bytes have been processed.
The default port is * standard-output*.

4.2.2.18 regi ster-address
(c-npe 'register-address nane)

Return the address of aregister.

4.2.2.19 di spl ay
(c-npe 'display &optional stream

Display the state of the mpe to the specified stream which defaults to * standard-
output*.

4.2.2.20 runti me-eval
(c-npe 'runtime-eval expr)

Evaluate the specified expression within an environment where *mpe* and &p are
bound to the MPE and the M PE registers are bound to their names (r0, r1, etc.).

4.2.2.21 find-regi ster-by-nane
(c-npe 'find-register-by-name nane)

Returns the register with the specified name. The name should be astring and is
case sengitive.

4.2.2.22 find-regi ster-by-address
(c-npe 'find-register-by-address addr)

Return the instance of c-register associated with the register with the specified
address.

4.2.2.23 regi ster-val ue

(c-npe 'register-val ue nane)

Return the value of the register with the specified name.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-7

4.2.2.24 set-regi ster-val ue
(c-npe 'set-register-val ue! name val ue)

Set the value of the register with the specified name.

4.2.3 Execution Control Methods

4.2.3.1 runni ng
(c-npe 'running?)

Return #t if the MPE isrunning and #f otherwise.

4.2.3.2 run
(c-npe 'run)
Start the MPE running. Instructions will be executed each time the MPE is clocked.

4.2.3.3 step
(c-npe 'step)

Cause the M PE to execute a single instruction.

4.2.3. 4 st ep-over
(c-npe 'step-over)

Cause the MPE to skip over a subroutine call.

4.2.3.5 stop
(c-npe 'stop)
Stop the M PE from running.

4.2.3.6 wait-for-halt
(c-npe "wait-for-halt)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-8

Wait for the MPE to halt after run or single step.

4.2.4 Breakpoint Methods

Breakpoints are represented by instances of the class c-breakpoint. See below for a
definition of that class.

4.2.4.1 fi nd- breakpoi nt
(c-mpe 'find-breakpoint addr)

Returns the instance of c-breakpoint associated with the breakpoint at the specified
address. If there is no breakpoint at the specified address, #f is returned.

4.2.4.2 br eakpoi nt
(c-mpe 'breakpoint? addr)

Isthere a breakpoint at the specified address? The addr parameter can be either an
address or a symbol name passed as a string. Returnstrueif thereis a breakpoint at
the specified address and #f if not.

4.2.4.3 set - br eakpoi nt
(c-mpe 'set-breakpoint! addr & key condition count)

Set a breakpoint at the specified address. If the addressis a symbol name, the value
of the symbol isused as the address. For example:

(&p 'set-breakpoint! "loop" :condition
"(< (rl1 '"value) 2)))

Thiswill bresk at the label "loop™ if the value of rl islessthan 2.

4.2.4.4 cl ear - br eakpoi nt
(c-mpe 'clear-breakpoint! addr)

Clear the breakpoint at the specified address. If the addressis a symbol name, the
value of the symbol is used as the address.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-9

4.2.4.5 clear-all-breakpoints
(c-mpe 'clear-all-breakpoints!)
Clear al breakpoints associated with this MPE.

4.2.4.6 map- over - br eakpoi nt's
(c-mpe "'map-over -break pointsfcn)

Applies the specified function to each active breakpoint passing the associated
instance of c-breakpoint as a parameter. Returnsthe list of function values. For
example:

(&p ' map-over-breakpoints (lanmbda (b) (format #t
"~0Br eakpoi nt at ~X" (b 'address))))

Thiswill display the address at which each of the current breakpointsis set.

4.2.4.7 show- br eakpoi nts
(c-mpe 'show-breakpoints)

Show all breakpoints associated with this MPE in the console window.

4.2.4.8 add- bef or e- net hod
(c-mpe'add-before-method! addr method)

Add abefore method at the specified address. If the addressis a symbol, the value of
the symbol isused asthe address. For example:

(&p 'add-before-method! "loop" '(format #t
"~0At start of |oop"))

Thiswill display "At start of loop" before the instruction at "loop” is executed.

4.2.4.9 remove- bef or e- met hod

(c-mpe 'remove-before-method! addr)

Remove the before method at the specified address.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-10

4.2.4.10 add- af t er - met hod
(c-mpe'add-after-method! addr method)

Add an after method at the specified address. If the address is a symbol, the value of
the symbol is used as the address. This method works the same as 'add-before-
method! except that the method is evalulated after the instruction is executed rather
than before.

4.2.4.11 remove- af t er - met hod

(c-mpe'remove-after-method! addr)

Remove the after method at the specified address.

4.2.5 Object File Access Methods

4.2.5.1 set-current-bl ock
(c-npe 'set-current-block! addr)

When debugging a C or C++ program, this function sets the current scope to the
block containing the specified address. Local symbols are resolved relative to this
scope.

4.2.5.2 get - | ocal - synbol - nanes
(c-npe 'get-Ilocal -synbol - nanes)

Get thelist of local symbol namesin the current scope.

4.2.5.3 fi nd- synbol
(c-npe 'find-synmbol nane)

Find a symbol in the current scope. Returns four values: the symbol value, the
overlay identifier, the storage class, and atype specifier. The overlay identifier is#f
if the symbol isnot in an overlay.

Symbol Classes:

frame for variables on the stack
address for variablesin memory

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-11

register for variablesin registers

Type Specifiers:
void
char
short
int
long
float
double
unsigned-char
unsigned-short
unsigned-int
unsigned-long
(struct tag-name)
(union tag-name)
(enum tag-name)
(pointer type-specifier)
(function type-specifier)
(array size element-size type-specifier)

4.2.5.4 find-type
(c-npe 'find-type nane)

Find atype defined in the current scope. Returns atype specifier.

4.2.5.5 get -t ag- menbers

(c-npe 'get-tag-menbers nane)

Get the structure or union members associated with the specified name. Returns a
list of tag specifiers. Each tag specifier isalist containing the name of the tag, the

byte offset from the start of the structure or union (or bit offset for bit fields), atype
specifier and asize for bit fields.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-12

4.2.5.6 get-file-reference
(c-npe 'get-file-reference n)

Get the specified file reference. File references are number starting at zero and
continuing to the number of files minus one. Returns the filename associated with
the specified file reference number.

4.2.5.7 get-file-references
(c-npe 'get-file-references)

Get alist of all filereferences. Returnsalist of all referenced filenames.

4.2.5.8 find-Iine-nunber
(c-npe 'find-1line-nunber addr &optional offset)

Find the line number information associated with a specified address. If the offset
parameter is#t, the line number returned may be associated with an address less than
the specified address. It defaults to #f. Returns the file reference number, the line
number, the line count and the byte offset from the specified address (or #f if the
offset parameter is #f).

4.2.5.9 find-address-fromline-nunmber
(c-npe 'find-address-fromline-nunber file |ine)

Finds the address associated with the specified file reference number and line
number.

4.2.5.10 find-function
(c-npe 'find-function addr)

Find the function containing the specified address. Returns the file reference number
and function name.

4.2.5.11 start-address
(c-npe 'start-address)

Returns the start address specified in the object file.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-13

4.2.5.12 set-start-address
(c-npe 'set-start-address! addr)

Set the start address of an MPE.

4.3 C-REGISTER Class

Instances of the C-REGISTER represent registersin the MPE.

4.3.1 Methods

4.3.1.1 name
(c-register 'nane)

Return the name of aregister.

4.3.1.2 addr ess
(c-register 'address)

Return the address of the register.

4.3.1.3 val ue
(c-register 'val ue)

Return the value of the register.

4.3.1. 4 set -val ue
(c-register 'set-value! val ue)

Set the value of aregister.

4.4 C-BREAKPOINT Class

Instances of the c-breakpoint class represent breakpoints set in an MPE.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-14

4.4.1 Methods

4.4.1.1 addr ess
(c- breakpoi nt 'address)

Return the address at which the breakpoint is set.

4.4.1.2 synbol
(c- breakpoint 'synbol)

Return the symbol used to set the breakpoint if there was one. The symbol is
returned as a string. Returns #f if no symbol was used to set the breakpoint.

4.4.1.3 br eakpoi nt
(c- breakpoint 'breakpoint?)

Return #t if there is auser breakpoint at this address.

4.4.1. 4 condi tion
(c-breakpoint 'condition?)

Return true if there is a condition on this breakpoint. Otherwise, return #f.

4.4.1.5 settings
(c- breakpoint 'settings)

Return akeyword/value list with the breakpoint settings.

4.4.1.6 change

(c- breakpoint 'change! &key breakpoint? condition
count
before after)

Change the settings of the breakpoint.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-15

This page intentionally left blank!

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-16

5. Utility Functions

5.1 Fixed Point Math Operations

5.1.1.1 real ->32bits
(real ->32bits val ue &ey frachits)

Convert areal value to a 32 hit fixed point value with the specified number of
frachits. The frachits parameter defaults to 16.

5.1.1.2 32bi t s->r eal
(32bits->real val ue &key frachits)

Convert a 32 bit fixed point value with the specified number of frachitsto areal.
The frachits parameter defaultsto 16.

5.1.1.3 64bi t s- >r eal
(64bits->real val ue-high value-low &ey frachits)

Convert a 64 bit fixed point value with the specified number of frachitsto areal.
The frachits parameter defaultsto 32.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 5-1

This page intentionally left blank.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 5-2

