
V M    L A B S

NUONtm BIOS Documentation

Revision 1.04.00

April 25, 2001

VM Labs, Inc.
520 San Antonio Rd
Mountain View, CA 94040
Tel: (650) 917 8050
Fax: (650) 917 8052

NUONtm and NUON Media Architecturetm are trademarks of VM Labs, Inc. The information
contained in this document is confidential and proprietary to VM Labs, Inc. and is provided
pursuant to a Non-Disclosure agreement between VM Labs, Inc. and the recipient. It may
not be distributed or copied in any form whatsoever without the prior written permission of

VM Labs.



Copyright notice

Copyright c
1998–2001 VM Labs, Inc.
All Rights Reserved

The information contained in this document is confidential and proprietary to VM
Labs, Inc., and is provided pursuant to a Non-Disclosure agreement between VM
Labs, Inc. and the recipient. It may not be distributed or copied in any form whatso-
ever without the prior written permission of VM Labs.

This is a preliminary specification. VM Labs reserves the right to make
changes to any and all of the interfaces described in this document.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY i



Contents

1 Introduction 1
1.1 NUON Boot Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 All Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 DVD Based Systems . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 Set Top Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.5 What environment does the booted program see? . . . . . . . 2

1.2 BIOS Compatibility Guidelines . . . . . . . . . . . . . . . . . . . . . . 3

2 BIOS Configuration and Control 5
2.1 BiosGetInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 GetSystemSetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 GetSystemSettingLength . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 SetSystemSetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 LoadSystemSettings . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 LoadDefaultSystemSettings . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 BiosInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.8 BiosExit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.9 BiosReboot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.10 BiosPoll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.11 BiosPauseMsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.12 PatchJumptable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Interrupt Service Routines 10
3.1 IntSetVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 kIntrVideo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 kIntrSystimer0 . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 kIntrCommRecv . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 IntGetVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Re-entrant System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Calls which are both thread-safe and callable from another MPE 13
3.3.2 Calls which are re-entrant but only callable from MPE 3 . . . . 13

4 DMA Functions 14
4.1 DMALinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 DMABiLinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Specialized DMA functions . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Comm Bus Functions 16
5.1 CommSend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 CommSendInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 CommSendDirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 CommRecvInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 CommRecvInfoQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY ii



5.6 CommSendRecv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7 CommSendRecvInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.8 Other comm bus functions . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 MPE Control and Execution Functions 19
6.1 LoadGame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 MemLoadCoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 StreamLoadCoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 MPEAlloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.5 MPEAllocSpecific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.6 MPEFree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.7 MPEsAvailable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.8 MPEReadRegister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.9 MPEWriteRegister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.10 MPEStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.11 MPEWait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.12 MPELoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.13 MPERun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.14 MPERunThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.15 MPEStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 The MiniBIOS 25
7.1 MiniBIOS jump table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.1.1 MINIcommrecv . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.2 MINIcommrecvquery . . . . . . . . . . . . . . . . . . . . . . 27
7.1.3 MINIcommsend . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.4 MINIcommhook . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Cache Control Functions 28
8.1 DCacheSync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.2 DCacheSyncRegion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.3 DCacheFlush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.4 DCacheInvalidateRegion . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.5 CacheConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 Audio Functions 31
9.1 AudioReset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.2 AudioQuerySampleRates . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.3 AudioSetSampleRates . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.4 AudioQueryChannelMode . . . . . . . . . . . . . . . . . . . . . . . . 32
9.5 AudioSetChannelMode . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.6 AudioSetDMABuffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10 Video Functions 33
10.1 Video Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10.1.1 VidDisplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.1.2 VidChannel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY iii



10.2 Video Format Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.2.1 Frame Buffer Widths . . . . . . . . . . . . . . . . . . . . . . . . 36
10.2.2 Frame Buffer Heights . . . . . . . . . . . . . . . . . . . . . . . 37

10.3 VidConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.4 VidQueryConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.5 VidSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.6 VidChangeBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.7 VidChangeScroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.8 VidSync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.9 VidSetBorderColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.10 VidSetCLUTRange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.11 VidSetOutputType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11 Controllers and Other Serial Devices 41
11.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
11.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
11.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.4 ControllerInitialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.5 ControllerExtendedInfo . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.6 ControllerPollRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.7 DeviceDetect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.8 BiosIRMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

12 Time Related Functions 50
12.1 TimeOfDay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.2 TimeElapsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.3 TimerInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.4 TimeToSleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13 Media and Drive Functions 52
13.1 MediaOpen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.2 MediaClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.3 MediaGetDevicesAvailable . . . . . . . . . . . . . . . . . . . . . . . . 52
13.4 MediaGetInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.5 MediaRead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.6 MediaWrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.7 spinwait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.8 MediaShutdownMPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.9 MediaInitMPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.10 DiskGetTotalSlots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.11 DiskChange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.12 DiskEject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.13 DiskRetract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY iv



14 Memory Management 58
14.1 Local MPE Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.2 MemLocalScratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.3 SDRAM and System RAM . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.4 MemAlloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.5 MemFree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.6 MemAdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.7 MemInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

15 Platform Control Functions 60
15.1 StartImageValid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
15.2 SetStartImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
15.3 GetStartImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

16 Inside the BIOS 61
16.1 Memory Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
16.2 Bootup and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 61
16.3 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

16.3.1 File Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
16.3.2 Media Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
16.3.3 Network Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . 62

16.4 Library Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
16.5 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

17 Release List & Known Bugs 63
17.1 Samsung N2000 (Extiva-1) . . . . . . . . . . . . . . . . . . . . . . . . 63

17.1.1 Bios version 1.00.31 . . . . . . . . . . . . . . . . . . . . . . . . 63
17.1.2 Bios version 1.00.34 . . . . . . . . . . . . . . . . . . . . . . . . 63
17.1.3 Bios version 1.00.37 . . . . . . . . . . . . . . . . . . . . . . . . 63
17.1.4 Bios version 1.00.41 . . . . . . . . . . . . . . . . . . . . . . . . 64

17.2 Toshiba SD2300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
17.2.1 Bios version 1.02.52 . . . . . . . . . . . . . . . . . . . . . . . . 64
17.2.2 Bios version 1.02.57 . . . . . . . . . . . . . . . . . . . . . . . . 64
17.2.3 Bios version 1.02.59 . . . . . . . . . . . . . . . . . . . . . . . . 64
17.2.4 Bios version 1.02.61 . . . . . . . . . . . . . . . . . . . . . . . . 65

17.3 Samsung N501 (Extiva-2) . . . . . . . . . . . . . . . . . . . . . . . . . 65

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY v



1. Introduction
The NUON BIOS is a set of functions, interrupt service routines, and device drivers
that are designed to abstract the hardware of a NUON based system and make it
easy to port applications between different NUON systems (such as set top boxes
and DVD based systems), including systems that will be based on more powerful
processors.

1.1 NUON Boot Sequence

Below we describe the events that take place when a NUON system first powers on.
The exact details of which component (BIOS or DVD player software) determines the
disc type may vary from system to system, but the overall boot flow will be similar.

1.1.1 All Systems

Hardware initialization, including loading device drivers from devices on the serial
device bus.

1.1.2 DVD Based Systems

Check the type of disk (DVD or CD-ROM). If it is a DVD, use the Micro-UDF file
system (as specified in OSTA UDF spec, revision 1.50; see the OSTA web page1.

CD-ROMs are not, in general, bootable, although the CD/VCD player may be
able to read files from the ISO9660 file system on a CD-ROM or multisession CD
and use those files for special purposes (like extending the built-in VLM player).

Once the file system type has been determined, look for a NUON directory at the
root.

1. If NUON is not found, load and run DVD, Video CD, or CD-DA decode software
from ROM, as appropriate.

2. Otherwise: load and display NUON.N16. This is a 352x288 pixel, 16bpp image
stored in raster order. The display buffer is at the base of main-bus RAM. If the
system is displaying NTSC video, only the middle 240 lines will be displayed.

3. Validate the disk. If the disc is not properly authenticated, reboot.

4. Load the file NUON/NUON.XXX (if it exists) into system RAM, and cause MPE
3 to start executing it. This is a model-specific executable, useful for firmware-
modifying executables, and in cases where the built-in firmware in a model is
unable to run a particular application without large-scale changes. See sec-
tion 17 for the XXX codes associated with particular models.

5. Load the file NUON/NUON.RUN (if it exists) into system RAM, and cause MPE
3 to start executing it.

1http://www.osta.org

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 1

http://www.osta.org


When the game finishes, it calls the BiosExit function, which resets the system
software to look for a new disk.

Note the following requirements for a DVD based system:

1. All files must be contiguous on the disk.

2. It is possible to make a disk that plays a movie on a regular DVD player but
plays a game on NUON.

3. Movies in the VIDEO TS subdirectory can be played on a regular DVD; movies
in the NUON directory will only play on NUON enhanced players.

1.1.3 Set Top Systems

Start running the MPE 3 server (the “dispatcher”) that listens to requests from the
PowerPC (or other host processor) for native OS (like Maui) or MML services.

To start a NUON-only game, the PowerPC puts the code (plus headers) into sys-
tem RAM and then sends a “Start Program” request to MPE3. MPE3 then arranges
to validate the code and (if it passes) to start running at that address. The game then
takes over control of the system. When it is finished, it calls the BiosExit function,
which notifies the host that NUON is finished and re-starts the MPE 3 server.

On the host side, an application will have to be available that listens for network
requests and/or requests for keyboard and similar I/O from NUON, and that sends
back the appropriate data to the requesting MPE. This application might be running
at all times (if the STB has a multitasking OS and if this makes sense) or it may run
only for as long as the NUON game is running, exiting when it receives notification
from the NUON BIOS that the game is finished.

1.1.4 Hybrid Systems

Follows the boot sequence for set top systems. The host processor (e.g. PowerPC)
may send a command to the MPE 3 dispatcher asking it to check the drive. In this
case, the DVD drive is checked, and if a valid disk is there then a response (either
“normal DVD” or “NUON bootable DVD”) is sent back to the host. The host may then
either send a “start DVD movie playback” or “boot NUON disk” command. In the
latter case, the application is loaded, verified, and run from DVD as in a DVD based
system (section 1.1.2).

1.1.5 What environment does the booted program see?

1. The program starts in MPE 3.

2. The program starts up with 4K iram cache/3K dtram cache, with 512 bytes of
dtram reserved for local ram functions. The remaining 512 bytes of dtram is
available for user code and stack. The cache is valid, usable, and sync’d with
memory.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 2



3. The BIOS is set up for cached operation, i.e. the level 1 isr is running out of
cached memory. The video isr, the timer 0 isr, and the comm receive isr are
running; no other isrs are active at boot up time.

4. MPE 0 is running local code to support disk operations and streaming PCM
audio. MPE 3 is responsible for loading up any other MPEs it wants to run.

5. The first 64K of system RAM and the last 640K of system RAM is reserved for
BIOS use. If the Presentation Engine is in use, the last 3200K of system RAM
is reserved for the BIOS and Presentation Engine. All other system RAM and
main bus RAM is usable by the program. At initial boot time, the video is set up
to display a frame buffer at the base of main bus RAM, containing the contents
of the NUON/NUON.N16 file.

1.2 BIOS Compatibility Guidelines

Applications must obey the following rules in order to ensure that they will operate
properly with the BIOS.

1. Applications may use up to 8 MB of main bus RAM and up to 8MB - 704K of
system RAM.

2. The first 64K of NUON-visible system RAM is reserved for the BIOS.

3. The last 640K (beginning at address 0x80760000) of NUON-visible system
RAM is reserved for the BIOS.

4. For software that uses Presentation Engine functions, the last 3200K of NUON-
visible system RAM (beginning at address 0x804e0000) is reserved for the
BIOS and Presentation Engine.

5. The following hardware may be accessed only through the BIOS:

(a) video

(b) MPE 3 cache configuration

(c) controllers (and other serial bus devices)

(d) media (DVD/memory cards/etc.)

(e) network and modem

(f) hardware timers

The audio hardware may be accessed only through the MML audio libraries, or
through VM Labs approved substitutes.

Note that there are some standard C library functions that access the above
hardware (for example, the C library open and read functions). These will end
up calling the BIOS, indirectly.

6. Only MPE 3 may access the BIOS. It is also subject to the following restrictions:

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 3



(a) It must not access the communication bus directly. All comm bus ac-
cesses must be via the BIOS, so that comm bus based devices (such as
controllers) will work correctly.

(b) It must not use interrupt driven DMAs. (This is generally true of cached
MPEs, because cache misses cause DMAs).

(c) Interrupt vectors may be set only via the IntSetVector BIOS call.

7. MPE 0 is also subject to some restrictions, in environments where media layer
functions or streaming audio or video are desired.

(a) It must not use the caches.

(b) Internal memory available to the program is only 4k each of instruction
and data memory.

(c) It must not access the communications bus directly. All comm bus ac-
cesses must be via the mini-BIOS.

8. Playing back MPEG2 movies is a special case. The normal BIOS routines for
MPEG playback will basically take over the system while the movie is being
played (this will be suitable for simple movie clips during games). For more
sophisticated uses of MPEG2 (e.g. electronic program guides) VM Labs will
provide a library for developers to link against, so that their application can con-
tinue to run while movies are playing. Obviously there will be severe restrictions
during this mode. The exact details of this library are still being worked out.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 4



2. BIOS Configuration and Control

2.1 BiosGetInfo

#include <nuon/bios.h>
struct BiosInfo * BiosGetInfo(void)

This function returns a pointer to a structure which gives some information about
the BIOS. This structure is guaranteed to have the following fields:

major version BIOS major version number. This changes only for major new
BIOS releases.

minor version BIOS minor version number. This changes for major bug fixes or
whenever a new function is added.

vm revision VM Labs revision number. This changes for every release (unless
one of the other fields changes!)

oem revision Reserved for OEM use.

info string A zero terminated ASCII string giving some information about the
BIOS. This will include a formatted copy of the version number information
above, as well as a vendor name and copyright notice.

date string A zero terminated ASCII string giving the date of the BIOS build. This
field is much less useful than the various version fields above, since the same
BIOS version could be built on different dates.

2.2 GetSystemSetting

#include <nuon/sysinfo.h>
int GetSystemSetting( int select, void * data, int len, int flags )

Gets information about a system setting. select selects which setting to retrieve.
data is a memory location into which the setting will be written (if it will fit). len is the
amount of space available at data. flags determines whether the current setting (if
flags is 2) or system setting (if flags is 1) will be read. These will normally be the
same, although the current setting may be changed by the application.

Most system settings are 1 byte in length, but the exact length required may be
obtained from the GetSystemSettingLength call.

GetSystemSetting returns 0 if it is successful, otherwise it returns an error
code. Possible errors include EINVAL if select is not valid, or ENAMETOOLONG if
the requested setting will not fit in len bytes.

Possible values for select include:

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 5



Value Meaning
kPlayerLanguage Default language used by the DVD player (presently may

be one of nvlNone, nvlPlayerEnglishLanguage,
nvlPlayerFrenchLanguage, or nvlPlayerSpan-
ishLanguage).

kAudioOutChannels Bitmask of audio output channels.
kParentalCountryCode 2 byte country code (in ASCII).
kParentalLevel Current level of parental lockout (default is 0xf, unlocked).
kRegionCode Region code of this DVD player, or 0 if this is not a DVD

player and has no similar notion of region codes.
kDisplayAspectCode Aspect ratio of the television; 0 for 4:3, 1 for 16:9.
kTvSystem Current TV output setting: 0 for NTSC, 1 for PAL, 2 for

PAL60
kSupportedVideoMaterial Bitmask specifying the type of video material supported

Bit 0 - NTSC Bit 1 - PAL
kSupportedVideoSystem Bitmask specifying the type of video output standard sup-

ported Bit 0 - NTSC Bit 1 - PAL Bit 2 - PAL60

Besides the values above, select may also be set to kGameCookie plus a game
specific id (which must be assigned by VMLabs). In this case, a 2 byte game specific
value stored in the BIOS ROM may be retrieved. This provides a mechanism to allow
games to configure themselves on future hardware. Maintainance and interpretation
of the game cookies is entirely up to game developers; the BIOS merely reports the
value which the developer assigned to the cookie for this class of machine.

2.3 GetSystemSettingLength

#include <nuon/sysinfo.h>
int GetSystemSettingLength( int select, int * len )

Sets the integer pointed to by len to the length of the system setting required by
select. See GetSystemSetting for further information. Returns 0 if successful, or
EINVAL if select is not a valid system setting on this machine.

2.4 SetSystemSetting

#include <nuon/sysinfo.h>
int SetSystemSetting( int select, void * data, int len, int flags )

Changes the current setting of a system setting. The parameters select, data,
and len have similar meanings to their use in GetSystemSetting, except that data
points to the data to be written. flags must be 2; only the current settings may be
changed by games.

Returns 0 if successful, EINVAL if select is not valid, or ENAMETOOLONG if len
doesn’t match the value returned by GetSystemSettingLength for select.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 6



2.5 LoadSystemSettings

#include <nuon/sysinfo.h>
int LoadSystemSettings(void)

Loads all system settings from NVRAM. This may be called by applications to
refresh settings, although typically this will not be necessary (the default settings
provided by the boot system should be used).

2.6 LoadDefaultSystemSettings

#include <nuon/sysinfo.h>
int LoadDefaultSystemSettings(void)

Reset all the system settings to the default value. The content of the NVRAM will
not be affected.

2.7 BiosInit

#include <nuon/bios.h>
void BiosInit(void)

This function initializes the BIOS. The C run-time library causes BiosInit to be
called automatically whenever an application starts, so normally it will not be neces-
sary for applications to make this call.

Note that only one MPE may call BiosInit. After the call to BiosInit, no other
MPE may make this call until BiosExit has been called. Also note that the current
implementation of the BIOS requires that only MPE 3 may make this call.

2.8 BiosExit

#include <nuon/bios.h>
void BiosExit(int exitcode)

Applications must call this function when exiting. This will cause the appropri-
ate main application (the DVD gui interface for DVD applications, or host processor
server for set-top boxes) to be restarted.

The C library exit and exit functions will call this function automatically, as will
the standard C runtime initialization code, if main() returns.

It is the application’s responsibility to cleanly shut down all MPEs in use and to
issue MediaClose calls for all handles returned from MediaOpen before calling
BiosExit.

On development systems, BiosExit will cause the processor to halt. On produc-
tion systems, it will either cause the system to reboot or else it will cause a player
shell (such as the one used on hybrid discs) to be reloated and restarted, as appro-
priate.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 7



2.9 BiosReboot

#include <nuon/bios.h>
void BiosReboot(void)

Reboots the system. This should be used only at the user’s explicit request, and
even then only in exceptional circumstances. Needless to say, this function does not
return.

2.10 BiosPoll

#include <nuon/bios.h>
int BiosPoll(char * msg)

This function should be called by applications at periodic intervals (at least 5
times per second) to check for special events, such as emergency broadcast mes-
sages. The function also causes watchdog timers to be reset on systems that have
them, which means that failure to call BiosPoll could result in the system rebooting
after 200 milliseconds have elapsed since the last BiosPoll call.

The parameter msg should point to a space containing at least 256 bytes of
memory. This memory may be overwritten with a (zero terminated) ASCII string
describing a message from the BIOS to be displayed to the user.

The parameter msg should point to a space containing at least 128 bytes of
memory. This memory may be overwritten with an ASCII string describing a mes-
sage from the BIOS to be displayed to the user.

BiosPoll returns 0 if there are no pending events. Otherwise it may return one
of the following non-zero values:

Value Meaning
kPollDisplayMsg The application should display the ASCII text message

placed in msg to the user. If for some reason the ap-
plication is unable to do so, it should pause and call
BiosPauseMsg to display the message for it.

kPollPauseMsg The BIOS wishes to display a message for the user.
The application should call BiosPauseMsg, passing the
value returned from BiosPoll (kPollPauseMsg, in this
case) and msg as parameters.

kPollSaveExit An event has occurred that requires the application to exit
immediately. If possible, the application should save its
current state before exiting.

If for any reason BiosPoll returns a value other than one of those listed above,
the application should pause and call BiosPauseMsg with the parameter rval being
the value returned by BiosPoll (similar to what should be done if kPollPauseMsg
is returned).

Use of BiosPoll to monitor for messages is not enforced on most DVD systems,
but it may be required for applications to function properly on set top boxes.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 8



2.11 BiosPauseMsg

#include <nuon/bios.h>
int BiosPauseMsg(int rval, char * msg, void * framebuf )

Applications must call this function when BiosPoll has indicated that there is a
message pending that must be displayed to the user. The call to BiosPauseMsg
must occur within 50 milliseconds after the return from BiosPoll, or results are
unpredictable. rval is the value previously returned from BiosPoll; typically this will
be kPollPauseMsg, but could be any other non-zero return value from BiosPoll.
msg points to the the 256 byte buffer passed to the BiosPoll function; BiosPoll
had filled it in with information that BiosPauseMsg will use.

framebuf is a pointer to an area of at least 345600 bytes of SDRAM, aligned
on a 512 byte boundary, that the BIOS may use as a frame buffer for the message
to be displayed. The call to BiosPauseMsg may take an arbitrary amount of time
to complete, so the application should enter a pause mode before making this call.
After the BiosPauseMsg call returns, video is in an undefined state – the application
should use the appropriate BIOS video calls to reset the screen to its own frame
buffer.

BiosPauseMsg may return one of the following values:

Value Meaning
kPollContinue The application should continue normally.
kPollSaveExit An event has occurred that requires the application to exit

immediately. If possible, the application should save its cur-
rent state before exiting.

2.12 PatchJumptable

#include <nuon/bios.h>
void * PatchJumptable( void * entry, void * function )

Patches the BIOS jump table. entry is the label corresponding to the BIOS func-
tion to be patched. function is the new function to be called to perform the requested
BIOS service. The return value is the address of the old function performing the
BIOS service (so chaining is possible).

For example, to patch the BiosExit function to call the function NewExit, do:

OldExit = _PatchJumptable(_BiosExit, NewExit);

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 9



3. Interrupt Service Routines

The level 2 interrupt service vector is used by the BIOS, and so is NOT available for
use by applications.

Level 1 interrupt service routines (ISRs) may be set up by the programmer for
a variety of conditions. The BIOS provides a level 1 interrupt service routine that
saves registers and checks the intsrc and inten1 registers to see which inter-
rupts should be serviced. It then vectors through a table for these interrupts. Pro-
grammers may modify the interrupt vector table with the IntSetVector function.

Programmer installed ISRs should follow the following conventions:

1. They may use registers v0, v1, v2, r29, rc0, and rc1 as scratch registers,
and need not preserve condition codes (the condition code register and rzi1
are saved by the BIOS level 1 interrupt routine). All other registers must be
preserved.

2. Any programmer installed ISR should return via a normal rts call (using reg-
ister rz) to the BIOS’s main interrupt processing loop.

3. The code for programmer installed ISRs may reside either in a cached memory
space or in the local instruction RAM (section intcode).

4. The BIOS is not re-entrant. Only a limited number of BIOS functions may safely
be made from an ISR; see the section on re-entrant calls (section 3.3).

5. It is the responsibility of the ISR to clear the interrupt condition. This must be
done inside the ISR because different interrupts may require that the clearing
be done at different times (pulse interrupts require different treatment than level
interrupts). Therefore, user ISR functions should contain a st io instruction
that sets the appropriate bit in the intclr register. There are three exceptions
to this: the interrupts reserved for the BIOS and marked with a (*) in the table
below are handled by both the BIOS and the user ISR code, and in this case
the BIOS clears the interrupt at the appropriate time. These interrupts are the
kIntrCommRecv, kIntrVideo, and kIntrSystimer0 interrupts. See the
discussion below for more information on these.

3.1 IntSetVector

#include <nuon/bios.h>
void * IntSetVector(int which, void * newvec)

Installs a level 1 interrupt service routine. The parameter which specifies which
interrupt vector is to be modified. This is the same as the bit number of the interrupt
in the intsrc and inten1 registers (see the table below).

newvec is a pointer to the function to be executed when the interrupt occurs.
This may be either in internal (uncached) instruction memory, or in cached memory.
If newvec is NULL, then this interrupt is disabled.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 10



IntSetVector usually returns the address of the current interrupt service rou-
tine for this interrupt, or NULL if no ISR has been installed before for this interrupt.
However, see some exceptions below.

Interrupt Number Symbolic Name Meaning
31 kIntrVideo VDG beam position interrupt (*)
30 kIntrSystimer1 system timer 1
29 kIntrSystimer0 system timer 0 (*)
28 kIntrGPIO GPIO IO combined interrupt
27 kIntrAudio audio output interrupt
26 kIntrHost external host processor interrupt
25 kIntrDebug debug control unit interrupt
24 kIntrMBDone MCU macro-block done interrupt
23 kIntrDCTDone MCU DCT done interrupt
20 kIntrIIC serial peripheral bus interrupt
16 kIntrSystimer2 system timer 2
5 kIntrCommXmit comm bus transmit buffer empty interrupt
4 kIntrCommRecv comm bus receive buffer full interrupt (*)
1 kIntrSoftware software generated interrupt
0 kIntrException local MPE exception

Note that since the BIOS must run on MPE 3, interrupts that are specific to other
processors cannot usefully be captured with this mechanism, and so are not listed
in the table above. Similarly, the DMA interrupts may not be used on a cached
processor.

All interrupt handlers are called via an ordinary jsr instruction, and so should
return with rts. The top level interrupt handler saves vector registers v0, v1, and
v2, as well as the counter registers rc0 and rc1. The comm bus registers and DMA
registers are also preserved by the top level handler. The user provided ISR must
save and restore any other registers it uses; typically this will be done with push and
pop instructions, or by using the r31 stack. See the discussion above (section 3) for
a fuller list of requirements for programmer installed ISRs.

Please note that it is the responsibility of the interrupt handler to clear the under-
lying condition that caused the interrupt (for example, to clear the appropriate bit in
the intsrc register).

Several interrupts are reserved for the BIOS, and are marked with a (*) above.
These are the VDG beam position interrupt, the system timer 0 interrupt, and the
comm bus receive buffer full interrupt. If IntSetVector is used to set one of these
interrupts, then the user’s interrupt vector will be called only after the BIOS has pro-
cessed the interrupt first.

3.1.1 kIntrVideo

Any application-provided kIntrVideo interrupt service routine will be called once
per field, at the beginning of the vertical blanking interval.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 11



3.1.2 kIntrSystimer0

Any application-provided SYSTIMER0 interrupt service routine will be called by the
BIOS just after the normal BIOS timer 0 functions are called. This will occur at the
BIOS clock rate, which is 200 Hz.

3.1.3 kIntrCommRecv

The BIOS maintains a list of comm bus handlers. Calling IntSetVector to set the
kIntrCommRecv vector adds another handler. Each such handler should have the
C prototype:
int CommHandler( int id, int comminfo, int reserved1, int reserved2, int p0, int p1,
int p2, int p3 )

id is the comm bus id of the sender of the packet; comminfo is the comminfo
data associated with the packet (if any). p0 through p3 is the actual packet data. The
BIOS calls each comm bus handler in turn. If a handler recognizes and deals with
a packet, it should return -1, in which case the BIOS terminates processing of the
packet (it does not call any more packet handlers). Otherwise, the handler should
return with registers r0 through r7 unchanged. This latter requirement may not be
satisfied by functions written in C, so it may be necessary to write the top level of the
comm bus handler in assembly language.

Please note that all comm bus handlers must never modify r31 or acshift
(even to save and restore them), and must obey the C calling conventions.

The final handler in the BIOS chain of packet handlers is the comm bus queue
function that queues packets for later reception by CommRecvInfo.

Note that when IntSetVector is used to install a comm bus handler, it returns a
magic value that may be passed again to IntSetVector to uninstall the handler. This
is somewhat different from the normal behavior of IntSetVector, but is useful in this
case because more than one packet handler may be active at a time.

3.2 IntGetVector

#include <nuon/bios.h>
void * IntGetVector(int which)

Retrieves the current interrupt service routine for the interrupt number specified
by which. See the IntSetVector function for a description of what interrupt service
routines there are, and also how to change them.

If no interrupt service routine has been established for which, then IntGetVector
will return NULL.

3.3 Re-entrant System Calls

Most BIOS functions are not re-entrant, and so they may not be called from inside
an interrupt or from code running on another MPE (for example, code started via
MPERunThread). Re-entrant functions are listed below.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 12



Not all re-entrant functions are safe to call from another MPE. Many BIOS ser-
vices rely on interrupts that are only enabled in MPE 3, or on data structures which
may be in MPE 3’s cache (and not yet written out to memory).

3.3.1 Calls which are both thread-safe and callable from another MPE

The only BIOS functions which may be called from another MPE are CommSend
(and the related CommSendDirect and CommSendInfo), DMALinear, DMABiLinear,
DCacheSync, DCacheSyncRegion, and DCacheFlush. Note that although CommSend

is safe to use from another MPE, none of the comm bus receive functions will work
from another MPE (they rely on interrupts which happen in MPE 3).

3.3.2 Calls which are re-entrant but only callable from MPE 3

The IntSetVector The MediaRead function may be called from within a comm bus
or timer interrupt service routine. Calling it from within other interrupt service routines
may cause video glitches or other timing problems.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 13



4. DMA Functions

4.1 DMALinear

#include <nuon/dma.h>
void DMALinear(long flags, void * baseaddr, void * intaddr )

Performs a main bus or other bus linear DMA transaction. Which bus to use is
determined by the external address baseaddr.

flags are the DMA flags, as described in the “Main Bus” or “Other Bus” section
of the NUON Specifications. These flags must be appropriate for a linear DMA.
Typically flags will contain the number of scalars to transfer in bits 16 to 22, and bit
13 will be clear for a DMA write and set for DMA read. If any of the special main bus
linear transfer command mode bits are set, then baseaddr must be in SDRAM (so
that the main bus will be used).

baseaddr is the base address, which may be in SDRAM, system RAM, or ROM.
intaddr is the internal address for the DMA, which must be in the MPE’s local RAM.

Note that the length of the transfer should not exceed 32 scalars (if the external
address is known to be in SDRAM, 64 scalars is the limit). Longer transfers may be
accepted by the hardware, but will interfere with interrupt latency and may cause I/O
transfers to malfunction.

DMALinear will not return until the DMA is finished.

4.2 DMABiLinear

#include <nuon/dma.h>
void DMABiLinear(long flags, void * baseaddr, unsigned long xinfo, unsigned long
yinfo, void * intaddr )

Performs a main bus pixel mode or MPEG mode DMA transaction. xinfo gives the
X length (in the high 16 bits) and position (in the low 16 bits), and similarly yinfo gives
the Y length and position. The other parameters are the flags, base address, and
internal address as described in the “Main Bus” section of the NUON Specifications.
Note that the external memory address baseaddr must be in SDRAM.

Note that the total length of the transfer must not exceed 256 bytes. Longer
transfers may be accepted by the hardware, but will interfere with interrupt latency
and may cause I/O transfers to malfunction.

DMABiLinear will not return until the DMA is finished.

4.3 Specialized DMA functions

These functions are not as general as DMALinear and DMABiLinear, and may
not be as efficient on future machines. They should be used with care, as they are
not as robust against hardware bugs as the other DMA functions.
void Dma wait(volatile int * ctrl)

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 14



Reads the DMA control register pointed to by ctrl (which should point to either
odmactl or mdmactl) and waits until all DMA on that bus is complete.
void Dma do( volatile int * ctrl, void * cmdBlock, int waitFlag )

Execute a DMA command block. ctrl must point to either odmactl for an other
bus DMA, or mdmactl for a main bus DMA, as appropriate to the DMA command
to be issued. cmdBlock must point to the DMA command block, which must be in
internal MPE memory (such as memory returned by MemLocalScratch). waitFlag
should be 1 if the command is to block until the DMA is completed.

Note that hardware bugs mean that for all practical purposes waitFlag must be 1
for all main bus DMAs. Also note that if waitFlag is 0 then Dma do will return with no
guarantee tha the command has even been read by the hardware yet; in this case,
it is not safe to write into the memory pointed to by cmdBlock until after Dma wait
has been called.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 15



5. Comm Bus Functions

5.1 CommSend

#include <nuon/comm.h>
void CommSend(int target, long * packet)

Sends a communication bus packet to the destination whose communication bus
id is target. packet points to the four long words to be sent. The comminfo value
sent along with the packet will always be set to 0.

The CommSendDirect function provides another interface which does not re-
quire the packet to be in memory, and hence may be faster for some purposes.

5.2 CommSendInfo

#include <nuon/comm.h>
void CommSendInfo(int target, int info, long * packet)

Sends a communication bus packet to the destination whose communication bus
id is target. packet points to the four long words to be sent. info is an 8 bit quantity to
be placed in the comminfo register. If target is an MPE, then this data is transmit-
ted along with the packet and may be retrieved from the comminfo register on the
destination MPE. If target is a hardware unit, then info is ignored.

The CommSendDirect function provides another interface which does not re-
quire the packet to be in memory, and hence may be faster for some purposes.

5.3 CommSendDirect

#include <nuon/comm.h>
void CommSendDirect( long p0, long p1, long p2, long p3, int target, int info)

Sends a communication bus packet to the destination whose comm bus id is
target. p0 through p3 are the 4 scalars of the packet to send. info is an 8 bit quantity
to be placed in the comminfo register and transmitted along with the packet.

CommSendDirect is generally the fastest way to send a comm bus packet,
since it does not require the packet to be fetched from memory. However, if the
packet is already in memory in an array of long words, use CommSendInfo to send
the packet instead.

5.4 CommRecvInfo

#include <nuon/comm.h>
int CommRecvInfo( int * info, long * packet)

Receives a single communication bus packet; the four long words of the packet
will be placed in the memory pointed to by packet, and the 8 bit contents of the
comminfo register will be placed in the memory pointed to by info. If the sender

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 16



specified extra information (e.g., if the packet was sent with the CommSendInfo
function) then this will be the extra info; otherwise, it may contain garbage.

CommRecvInfo returns the comm bus id of the processor that sent the packet.
If no packet is available when CommRecvInfo is first called, then it will wait until

a packet is received. For a non-blocking read function (one that returns immediately
if no data is available) use CommRecvInfoQuery.

5.5 CommRecvInfoQuery

#include <nuon/comm.h>
int CommRecvInfoQuery( int * info, long * packet)

Attempts to receive a single communication bus packet. If a packet is available,
then four long words of the packet will be placed in the memory pointed to by packet,
and the 8 bit contents of the comminfo register will be placed in the memory pointed
to by info. If the sender specified extra information (for example, if the packet was
sent with the CommSendInfo function) then this will be the extra info; otherwise, it
may contain garbage. In this case CommRecvInfoQuery returns the comm bus id
of the processor that sent the packet.

If no packet is available when CommRecvInfoQuery is called, then it will return
immediately a value of -1.

For a blocking read function (one that waits for data to become available) use
CommRecvInfo.

5.6 CommSendRecv

#include <nuon/comm.h>
int CommSendRecv(int target, long * packet)

Sends a communication bus packet to the destination whose communication bus
id is target, and then waits for a response. packet points to the four long words to
be sent; on return these four long words are overwritten with the response received.
The return value is the comm bus id of the sender of the response that was received,
which will be target.

CommSendRecv may lock out interrupts while it is running, so it should be used
only to request data from hardware with low latency. Typically it would be used to
read registers from hardware units such as the miscellaneous I/O controller that are
accessible only via the comm bus.

5.7 CommSendRecvInfo

#include <nuon/comm.h>
int CommSendRecvInfo(int target, long * packet, int info)

Sends a communication bus packet to the destination whose communication bus
id is target, info will be placed in the comminfo register, of which only the lower 8
bits is valid, and then waits for a response. packet points to the four long words to

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 17



be sent; on return these four long words are overwritten with the response received.
The return value is the comm bus id of the sender of the response that was received,
which will be target.

CommSendRecvInfo may lock out interrupts while it is running, so it should be
used only to request data from hardware with low latency. Typically it would be used
to read registers from hardware units such as the miscellaneous I/O controller that
are accessible only via the comm bus.

5.8 Other comm bus functions

commpacket comm recv(void)
This function is not callable from C, but may be useful for assembly language

programmers. It is similar to CommRecvInfo, except that the packet is returned in
vector register v0, the comm bus ID of the sender is returned in register r4, and the
sent comm info value is returned in r5.
int comm query(void)

Checks to see if any comm bus packets are waiting to be returned by CommRecvInfo.
Returns 0 if there is a packet waiting, -1 if not.

This function is obsolete. It is much better to use the CommRecvInfoQuery
function, or to install a comm bus interrupt handler with IntSetVector.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 18



6. MPE Control and Execution Functions

6.1 LoadGame

#include <nuon/mpe.h>
void LoadGame(const char * name)

Loads and runs COFF file from disk or network. name is the name of the COFF
file to load. This function acts like a “chain” call; the currently executing program is
completely replaced by the new program in the COFF file. This COFF file must be
properly signed and authenticated (except that some development systems will allow
LoadGame on unauthenticated COFF files such as are normally produced by the

linker).
It is advisable to shut down all user MPE activity and wait for all I/O to finish

before making this call.
Note that LoadGame will never return, even in the event of an error. For security

reasons, if an error occurs in LoadGame then the system will reset. For this reason
it is a good practice to check for the existence of the file name before passing it to
LoadGame.

6.2 MemLoadCoff

#include <nuon/mpe.h>
int MemLoadCoff( int mpe, void * coffbase, int flags, void * extra )

Loads a COFF file from memory. Any local memory sections are placed into the
indicated MPE mpe. MemLoadCoff, if successful, returns the entry point indicated
in the COFF file. If there is an error while loading the COFF file, MemLoadCoff
returns 0. Note that the error checking is not very robust, and a bad COFF file might
be loaded without an error being reported but still not work correctly.

MemLoadCoff may have side effects on other MPEs. In particular, it attempts to
shut down the media MPE and allocate it to accelerate decompression and loading
of COFF files.

coffbase is a pointer to the COFF file in memory. This should simply be a verbatim
binary copy of a COFF file produced by the linker or assembler, or a compressed
COFF file produced by the zcoff tool. It should not have any authentication header.

flags contols how the loading is performed, and whether or not to start the MPE.
It is formed by or’ing together the following flags:

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 19



Flag Meaning
LOADFLAGS RUN start the target MPE after loading the COFF

file, and stop the current MPE (note the last
part!)

LOADFLAGS SAVE MPE preserve local memory in any MPE used for
COFF file decompression; needed if the ap-
plication hasn’t properly allocated MPEs

LOADFLAGS NOMEDIA do not touch the media processor; note that
this flag does not work properly in BIOS ver-
sions prior to 1.03.10

For most purposes the flags parameter should be set to 0. LOADFLAGS RUN may
be used to start the new MPE up, but it has the (unfortunate) side effect of stopping
the current MPE. This is usually not desired; typically applications will wish instead
to leave this flag clear, and to do MPERun on the target MPE using the entry point
of the COFF (which is returned by MemLoadCoff).

The LOADFLAGS NOMEDIA flag should be added if the application has changed
the normal media handling. The LOADFLAGS SAVE MPE flag should be necessary
only in exceptional circumstances where the BIOS MPE management has been by-
passed.

extra is reserved for future applications, and should always be set to (void *)0.
Be careful to place the COFF file to be loaded and the program doing the loading

in separate places in memory; if the new program overwrites the old, and the old is
still trying to run, there will likely be a crash.

MemLoadCoff returns the entry point of the loaded COFF file, or 0 if the load
failed. However, note that if the LOADFLAGS RUN flag was set, MemLoadCoff will
never return.

6.3 StreamLoadCoff

int StreamLoadCoff( char * name, long base)
This function is used by the firmware to load device drivers and applications over

the serial port. It is not intended for use by end user applications.
name is the full path and name of the file to be loaded. base is currently unused,

and should be set to 0. (It is intended eventually that if name is NULL, then base will
be the address of a COFF file in memory; however, that functionality may not work
properly right now. Use MemLoadCoff to load COFF files from memory.)

StreamLoadCoff returns 0 on success and a negative error code on failure.

6.4 MPEAlloc

#include <nuon/mpe.h>
int MPEAlloc(long flags)

Allocates an MPE, with properties given by flags. Returns the number of the MPE
allocated. If no MPE matching the flags can be allocated, returns -1.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 20



Any combination of the following flags (made by logically OR’ing them together)
may be used. If flags is 0, then any completely free MPE may satisfy the request.
The MPE running the mini-BIOS (if any) is not completely free, and so it will not be
returned unless the MPE HAS MINI BIOS flag is explicitly given.

Flag Meaning
MPE HAS ICACHE the MPE has an instruction cache
MPE HAS DCACHE the MPE has a data cache
MPE HAS CACHES the MPE has both instruction and data

caches
MPE DTRAM 8K the MPE has 8K of local data memory
MPE IRAM 8K the MPE has 8K of local instruction memory
MPE HAS MINI BIOS the MPE has a “mini” BIOS available; this

may mean that some MPE resources are
used by the BIOS. See the mini-BIOS section
for details.

6.5 MPEAllocSpecific

#include <nuon/mpe.h>
int MPEAllocSpecific(int mpe)

Allocates the given MPE. If mpe has already been allocated, returns -1, other-
wise returns mpe.

6.6 MPEFree

#include <nuon/mpe.h>
int MPEFree(int mpe)

Frees the specific MPE mpe, which must have been previously allocated by either
the MPEAlloc or MPEAllocSpecific function. If mpe is already free, returns -1,
otherwise returns 0.

6.7 MPEsAvailable

#include <nuon/mpe.h>
int MPEsAvailable(int flags)

If flags is 0, then this call returns the total number of MPEs in the system. If flags
is 1, then this call returns the number of free MPEs currently available for allocation.
All other values of flags are reserved for future use.

6.8 MPEReadRegister

#include <nuon/mpe.h>
long MPEReadRegister(int mpe, void * addr )

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 21



Reads a register from an MPE. The MPE must not be running (otherwise this call
could cause the other MPE to crash). mpe is the number of the MPE to read from,
and addr is the address of the register to be read within that MPE. This address
must be in MPE relative format, and so will typically lie in the 0x2050xxxx address
range. The value of the register will be returned.

6.9 MPEWriteRegister

#include <nuon/mpe.h>
void MPEWriteRegister(int mpe, void * addr, long value)

Writes a value to a register in an MPE. The MPE must not be running (otherwise
this call could cause the other MPE to crash). mpe is the number of the MPE, and
addr is the address of the register to be written within that MPE. This address must
be in MPE relative format, and so will typically lie in the 0x2050xxxx address range.
value is the value to be written into that register.

6.10 MPEStop

#include <nuon/mpe.h>
void MPEStop(int mpe)

Stops a running MPE, and has no effect on an MPE which is already stopped
(except that some bits in the control register of that MPE may be cleared).

6.11 MPEWait

#include <nuon/mpe.h>
long MPEWait(int mpe)

Waits for a running MPE to stop on its own. mpe is the number of the MPE to
wait for. If the target MPE halts because of an exception, MPEWait returns -1;
otherwise it returns the contents of the MPE’s register r0 at the time it halted.

6.12 MPELoad

#include <nuon/mpe.h>
void MPELoad(int mpe, void * mpeaddr, void * linkaddr, long size)

Loads code or data into a (stopped) MPE. mpe is the number of the MPE into
which the code or data is to be loaded. mpeaddr is the destination address (which
is MPE relative, i.e. given as though the MPE were MPE 0). void * linkaddr is the
address of the code or data in system memory; in other words, it’s where the code
or data was originally loaded. size is the size of the code or data to be loaded.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 22



6.13 MPERun

#include <nuon/mpe.h>
void MPERun(int mpe, void * entrypoint)

Starts an MPE. mpe is the number of the MPE, and entrypoint is the initial pro-
gram counter for the MPE; normally this should lie inside of instruction RAM. The
application is responsible for loading the correct code and data into the target MPE
before calling MPERun. Typically this will be done with DMALinear. The Miscella-
neous Utility Library libmutil has functions which make the process of starting an
MPE somewhat simpler, and it is recommended that applications use those functions
rather than calling MPERun directly.

If MPERun is called on an MPE which is already running, the results are unpre-
dictable and unlikely to be anything useful.

6.14 MPERunThread

#include <nuon/mpe.h>
int MPERunThread( int mpe, void * func, void * arg, long * stacktop )

Runs C code on a C capable MPE. mpe is the MPE on which to run the code,
which must have been allocated with the appropriate flags for C capable MPEs
(MPE HAS CACHES). func is the address of the C function to run, which should take
one 32 bit argument. void * arg is the argument which will be passed to the function.
stacktop is a pointer to the end of a (vector aligned) region of memory which will be
used as the C stack for the new thread (the C stack grows downwards).

The thread will continue running on the new MPE until it executes a halt instruc-
tion, or until the called function func returns.

Note that C code running on another MPE may access only a very few BIOS
services – most BIOS functions do not work on any MPE other than MPE 3. The
only services which are guaranteed to be available are the ones discussed in the
section on re-entrant calls (section 3.3). Also, a thread running on another MPE
should beware of calling any C library functions, unless they are known to be re-
entrant and thread-safe.

Attempts to allocate a C capable MPE and run code on it. func is the address
of the C function to run, which should take one 32 bit argument. void * arg is the
argument which will be passed to the function. stacktop is a pointer to the end of
a (vector aligned) region of memory which will be used as the C stack for the new
thread (the C stack grows downwards).

Note that C code running on another MPE may not, in general, access any BIOS
functions. Also, it should beware of calling library functions, unless they are known to
be re-entrant and thread-safe. The only thread-safe BIOS functions are DMALinear,
DMABiLinear, DCacheSync, DCacheSyncRegion, and DCacheFlush.

The two processes may communicate via shared memory; however, because
there is no automatic synchronization of the caches, the shared memory must either
be accessed via DMA or else care must be taken to manually synchronize the caches
on the two processors.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 23



MPERunThread returns 0 if it fails to start the thread (for example, if the re-
quested MPE is unable to run C code), and 1 if it succeeds.

Note that the MiniBIOS (section 7) runs on MPE 0 by default, and this is the only
MPE other than 3 which may run C code. So usually it will be necessary to make
the MediaShutdownMPE call to free MPE 0 before calling MPEAlloc to allocate
a C MPE (one with caches). It will then be necessary to call MediaInitMPE again
before any of the media functions can be used.

6.15 MPEStatus

#include <nuon/mpe.h>
long MPEStatus(int mpe)

Returns information about an MPE, such as whether or not it has caches, how
big its internal memory is, and whether it is presently allocated. The flags in the
returned value are the same as those passed to MPEAlloc, except that there are
two additional flags to indicate how (or whether) the MPE is in use:

Flag Meaning
MPE ALLOC USER the MPE was allocated by an application
MPE ALLOC BIOS the MPE is being used by the BIOS

It is possible for an MPE to be in use by both the BIOS and an application; in this
case the MPE is running the MiniBIOS (section 7) along with some user code.

Note that early versions of the BIOS did not implement the MPEStatus call, and
on such BIOSes the returned value will always be -1. The return value should be
tested before any of the flags are assumed to be valid.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 24



7. The MiniBIOS
Because cache misses can impose interrupt latencies longer than some DVD drives
are able to tolerate, the BIOS must run drive control code in an uncached MPE.
Thus, a portion of an uncached MPE is reserved for BIOS use. By default the BIOS
installs a piece of code at the top of MPE 0 to control drives. This code is called
the MiniBIOS. The NISE audio library also uses this space for streaming audio and
PCM sound effects. The top 4K of both the instruction and data RAMs on MPE 0 are
taken up by the combined audio and DVD drive reading code.

Applications may use the lower 4K of iram and dtram on MPE 0 for their own
code, provided that code obeys the following rules:

1. The code must not use interrupts (both the level 1 and level 2 ISRs are reserved
for the MiniBIOS and audio libraries). None of the interrupt registers may be
touched by the code.

2. The code must not cause any cache misses (neither the instruction nor data
cache may be used on the MPE running the MiniBIOS).

3. All accesses to the comm bus must be performed through the MiniBIOS jump
table.

4. Because the comm bus must always be available for the DVD drive, the ap-
plication must use software flow control for comm bus packets. If comm bus
packets are sent to the MPE hosting the MiniBIOS when its internal comm bus
queue is full, those packets will be lost.

5. The MiniBIOS uses the comminfo register to determine whether packets re-
ceived are designated for the application for for the DVD control code or stream-
ing audio code. Values of 0x80 through 0xff are reserved for MiniBIOS use.
Other MPEs which send comm bus packets to the MPE hosting the MiniBIOS
must be sure to set comminfo to a value between 0x00 and 0x7f.

6. If the code wishes to terminate, it may use the halt instruction to do so. The
MiniBIOS catches the exception generated by this instruction and shuts the
user code down gracefully.

If for any reason the application wishes to run code on the MiniBIOS MPE (by
default MPE 0) which does not obey the above restrictions, it will have to shut down
the MiniBIOS with the MediaShutdownMPE call and refrain from making any drive
accesses. To resume using the DVD drive, call MediaInitMPE. Note that if MPE
0 is still allocated when MediaInitMPE is called, the BIOS will attempt to allocate
another MPE for drive control. Thus, to use MPE 0 for running C code while still
accessing the drive, do:

_MediaShutdownMPE(); // free MPE 0
c_mpe = _MPEAlloc(MPE_HAS_CACHES); // allocate MPE 0
new_media_mpe = _MediaInitMPE(); // start new media MPE

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 25



if (new_media_mpe < 0) {
/* no drive accesses possible! We can’t run

the thread after all... */
if (c_mpe >= 0) {

_MPEFree(c_mpe);
_MediaInitMPE()

}
} else {

/* everything is OK; start the thread */
_MPERunThread(c_mpe, myfunc, arg, top_of_stack);

}

7.1 MiniBIOS jump table

The MiniBIOS jump table is located just before the level 1 interrupt service routine
on that MPE. The jump table may thus be accessed relative to the intvec1 register,
which allows us to change its position when the MiniBIOS is run on MPEs other than
MPE 0.

Offset Function
intvec1 - 4 Get number of jump table entries.
intvec1 - 8 MINIcommrecv
intvec1 - 12 MINIcommrecvquery
intvec1 - 16 MINIcommsend
intvec1 - 16 MINIcommhook

Thus, for example, to receive a comm bus packet the application running under
the MiniBIOS would do something like:

ld_io intvec1,r0
nop
sub #8,r0 ; point to MINIcommrecv
jsr (r0),nop

The functions are explained below. All MiniBIOS functions may change registers
r0 through r7 inclusive, and they preserve all other registers.

7.1.1 MINIcommrecv

Receives a single comm bus packet. The packet itself is returned in v0; the comm
bus id of the sender is returned in r4 and the comminfo value sent with the packet
is returned in r5. MINICommrecvwaits until a packet is received before returning.

Note that MINIcommrecv and MINIcommrecvquerywill not function if the ap-
plication uses MINIcommhook to override the default comm bus handler.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 26



7.1.2 MINIcommrecvquery

Exactly like MINIcommrecv, except that if no comm bus packet is available the func-
tion returns immediately with r4 set to -1.

Note that MINIcommrecv and MINIcommrecvquerywill not function if the ap-
plication uses MINIcommhook to override the default comm bus handler.

7.1.3 MINIcommsend

Sends the packet in v0 to the comm bus id specified in r4. The comminfo value
to send along with the packet is given in r5; if the target is another MPE, this value
should be in the range 0x00 to 0x7f.

7.1.4 MINIcommhook

Changes the default comm bus handler. r0 should point to a new comm bus service
routine, which will be called when comm bus packets arrive. The service routine will
receive the packet id in r0, the comminfo value in r1, and the packet itself in v1.
It may change v0 through v2, but must preserve all other registers. The comm bus
handler should not take more than a few milliseconds to run, or else streaming audio
and other MiniBIOS functions may be disrupted.

MINIcommhook returns the old comm bus handler in r0.
Applications may use this call if they wish to handle comm bus packets in an

interrupt driven fashion (rather than the polling provided by MINIcommrecv). Note
that MINIcommrecv and MINIcommrecvquery will not function if the application
uses MINIcommhook to override the default comm bus handler.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 27



8. Cache Control Functions
In the NUON hardware, the data and instruction caches are implemented by caus-
ing references to external memory (i.e. the SDRAM or system memory, as opposed
to on-chip memory) to be re-mapped to references to internal memory, and (if nec-
essary) a DMA from the external memory to internal to take place. This caching
mechanism is always active. However, logically there are times when one or both of
the caches is not being used (when only internal addresses are used, so no external
memory references take place). In this situation, the cache is said to be disabled.
Note that it is not, in general, possible to mix cache accesses with accesses to the
local memory that is used for the cache, since every time a cache miss occurs the lo-
cal memory may be overwritten, and similarly changing local memory contents may
cause unexpected changes to external memory contents. So either all accesses
should be to local memory only (cache disabled) or there are cache accesses and
no accesses to the portion of local memory being used for the cache (cache en-
abled).

The BIOS requires that a portion of internal memory must always be used for
both instruction and data caches. In other words, the instruction and data caches
must always be enabled in order to use BIOS services. The cache may be resized,
but it must always be there.

8.1 DCacheSync

#include <nuon/cache.h>
void DCacheSync(void)

Synchronizes memory with the MPE’s data cache (i.e. writes cache contents out
to system memory). After this call is made all data is guaranteed to have been stored
to memory. Since the data cache is not a write through cache, it is usually neces-
sary to make either a DCacheSync or DCacheFlush call before asking another
MPE to access memory that may have been modified via the cache. DCacheSync
differs from DCacheFlush in that it does not invalidate the cache, and thus it is the
preferred means of ensuring that data is in SDRAM if normal caching operation is to
continue. However, note that if you wish to use the cache to access a variable that
another MPE has set, you must use DCacheFlush to mark the cache invalid.

See also the DCacheSyncRegion call for synchronizing just a portion of the
cache.

The obsolete name synccache is a synonym for DCacheSync.

8.2 DCacheSyncRegion

#include <nuon/cache.h>
void DCacheSyncRegion( void * startaddr, void * endaddr )

Synchronizes memory with the MPE’s data cache. After this call is made all
data that is stored between addresses startaddr and endaddr (with startaddr in-
cluded in the region, but endaddr not), will be written out to memory. Since the

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 28



data cache is not a write through cache, it is usually necessary to make either
a DCacheSyncRegion or DCacheSync call before asking another MPE to ac-
cess memory that may have been modified via the cache. DCacheSyncRegion
differs from DCacheSync in that the latter call affects the entire cache, whereas
DCacheSyncRegion may affect only a portion of it.

The obsolete name syncmem is a synonym for DCacheSyncRegion.

8.3 DCacheFlush

#include <nuon/cache.h>
void DCacheFlush(void)

Synchronizes memory with the MPE’s data cache and invalidates the data cache.
After this call is made all data is guaranteed to have been stored out to memory, and
all data cache tags have been marked as invalid. This function is usually used before
trying to access memory that may have been modified by another MPE. It is a more
expensive operation than DCacheSync, and should therefore be used sparingly.

The obsolete name flushcache is a synonym for DCacheFlush.

8.4 DCacheInvalidateRegion

#include <nuon/cache.h>
void DCacheInvalidateRegion( void * startaddr, void * endaddr )

Marks any data cache lines containing addresses from startaddr up to (but not
including) endaddr as invalid. This means that any dirty data in those cache lines will
be lost. It is strongly recommended that both startaddr and endaddr be on cache
line boundaries (the default data cache line size is 32 bytes).

This call may be useful for synchronizing memory transfers between MPEs, but it
must be used with extreme caution. DCacheInvalidateRegion does not check for
dirty data in the cache, so it should be used only for blocks of memory which are
only read by this MPE (not written), are cache line aligned, and are a multiple of the
cache line size in length.

8.5 CacheConfig

#include <nuon/cache.h>
void CacheConfig( unsigned int dcachectl, unsigned int icachectl)

Changes the cache configuration of the BIOS MPE. dcachectl is the requested
new value for the data cache control register, and icachectl is the requested new
value for the instruction cache control value. If either of these is -1, then the corre-
sponding cache control register will be left unchanged. Otherwise, these values may
be built using the following macros:

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 29



CACHE DIRECT direct mapped cache
CACHE 2WAY 2 way associative cache
CACHE 3WAY 3 way associative cache
CACHE WAYSIZE 1K each way is 1024 bytes
CACHE WAYSIZE 2K each way is 2048 bytes
CACHE WAYSIZE 4K each way is 4096 bytes
CACHE BLOCKSIZE 16 each cache line is 16 bytes
CACHE BLOCKSIZE 32 each cache line is 32 bytes
CACHE BLOCKSIZE 64 each cache line is 64 bytes
CACHE BLOCKSIZE 128 each cache line is 128 bytes

The data cache value must leave at least 1024 bytes of memory for BIOS use (so
on a 4K MPE at most 3K may be used for the data cache). The amount of memory
used for the cache is the product of the number of ways and the size of each way.
For example, a 3 way cache with 1K waysize uses 3K of memory.

All of instruction memory may be used for instruction cache; the BIOS does not
require any instruction memory to be set aside. However, note that the assembler
and compiler are set up to produce code with a cache line size of at least 32 bytes;
to run code with a smaller line size requires special configuration (and is also likely
to produce poor results; in general larger line sizes are better for code).

The C library read and write functions may not work properly if the data cache
line size is greater than 32 bytes. The MediaRead function also assumes a cache
line size of 32 bytes. So in practice the data cache line size must be either 16 or 32
bytes.

Calling CacheConfig has the side effect of flushing the data cache (as with a
DCacheFlush call), as well as invalidating the contents of the instruction cache.

This happens even if one or both parameters is -1. Calling CacheConfig with
icachectl set to -1 is the only legal way to flush the instruction cache. This may be
necessary before running code loaded from disc (depending on how the code was
loaded).

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 30



9. Audio Functions
The audio BIOS provides calls to initialize and set up the audio hardware. Because
the actual hardware (type and number of DACs) can vary on different products using
NUON technology, libraries use these BIOS calls to make sure application may run
on all platforms. It is unlikely that application programmers will need to make any of
these calls directly; instead they should use the appropriate audio library (such as
libnise) to set up audio and play sounds.

9.1 AudioReset

#include <nuon/audio.h>
void AudioReset(void)

Resets the audio hardware. Same code that is used in the boot-up sequence.

9.2 AudioQuerySampleRates

#include <nuon/audio.h>
long AudioQuerySampleRates(void)

This function returns a bitfield of the supported sample rates

Bit Rate define
0 44.1 kHz RATE 44 1 KHZ
1 88.2 kHz RATE 88 2 KHZ
2 22.05 kHz RATE 22 05 KHZ
4 48 kHz RATE 48 KHZ
5 96 kHz RATE 96 KHZ
6 24 kHz RATE 24 KHZ
8 32 kHz RATE 32 KHZ
9 64 kHz RATE 64 KHZ
10 16 kHz RATE 16 KHZ

All other bits are reserved.

9.3 AudioSetSampleRates

#include <nuon/audio.h>
void AudioSetSampleRates( long rateField )

With this call you set one of the allowed sample rates. If you set an unsupported
rate, the call will be ignored. If you try to set more than one bit in the bitfield, only the
most significant set bit is tested. This call also initializes the S/PDIF output.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 31



9.4 AudioQueryChannelMode

#include <nuon/audio.h>
long AudioQueryChannelMode(void)

This function returns the current selected channel mode, as follows:

Stream Mode
Two 16bit channels STREAM TWO 16 BIT
Four 16bit channels STREAM FOUR 16 BIT
Two 32bit channels STREAM TWO 132 BIT
Eight 16bit channels STREAM EIGHT 16 BIT
Eight 32bit channels STREAM EIGHT 32 BIT
Four 32bit channels STREAM FOUR 32 BIT
Audio DMA buffer size
1K BUFFER SIZE 1K
2K BUFFER SIZE 2K
4K BUFFER SIZE 4K
8K BUFFER SIZE 8K
16K BUFFER SIZE 18K
32K BUFFER SIZE 32K
64K BUFFER SIZE 64K
Audio control
Enable Audio DMA ENABLE AUDIO DMA
Enable wrap interrupt ENABLE WRAP INT
Enable half interrupt ENABLE HALF INT
Enable sample interrupt ENABLE SAMP INT
Enable DMA skip mode ENABLE DMA SKIP
Enable DMA stall mode ENABLE DMA STALL

The channel mode information may be extracted from the returned value by meth-
ods TBD.

9.5 AudioSetChannelMode

#include <nuon/audio.h>
void AudioSetChannelMode( long mode)

The parameter mode specifies a channel mode by combining one stream mode,
one DMA buffer size, and any number of audio control defines. These defines are
described in the documentation for the AudioQueryChannelMode function.

9.6 AudioSetDMABuffer

#include <nuon/audio.h>
void AudioSetDMABuffer( long dmaBaseAddr )

dmaBaseAddr specifies the base address for audio DMA, i.e. the address of the
audio data buffer.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 32



10. Video Functions

10.1 Video Data Structures

10.1.1 VidDisplay

The VidDisplay structure has the following fields:

/*
* structure for overall display configuration
*/

typedef struct bios_viddisplay {
int dispwidth;
int dispheight;
int bordcolor;
int progressive;
int fps;
int reserved[5];

} VidDisplay;

The fields have the following meanings:

dispwidth The width of the physical display (use -1 to request a default width).
Note that this is the actual number of pixels output to the CCIR656 output
stream, and on almost all systems will be a constant which cannot actually be
modified.

dispheight The height of the display in pixels (use -1 to request a default width).

bordcolor The border color (as a 32bpp color). The VidSetBorderColor function
may be used to modify this.

progressive A flag for interlaced (if 0) or progressive (if 1) display. Use -1 for the
default value. This must be set to 0 or to -1 in the current BIOS version.

fps Fields per second (frames per second for a progressive display). This value is
a 16.16 fixed point number. On virtually all systems this field is read only. fps
should be set to 0 (which means “use default value”) in the structure passed to
the VidConfig function.

reserved This space is reserved for future expansion. It must be set to 0.

In the present version of the BIOS, dispwidth and dispheight must be set
to the default values (either -1 or the values returned by VidQueryConfig), and
progressivemust be set to 0.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 33



10.1.2 VidChannel

The VidChannel structure holds information about a specific video channel (main
channel or overlay channel). The structure has the following elements:

/* structure for configuring a specific channel */
typedef struct bios_vidchannel {

long dmaflags;
void *base;
int dest_xoff;
int dest_yoff;
int dest_width;
int dest_height;
int src_xoff;
int src_yoff;
int src_width;
int src_height;
unsigned char clut_select;
unsigned char alpha;
unsigned char vfilter;
unsigned char hfilter;
int reserved[5];

} VidChannel;

The fields have the following meanings:

dmaflags DMA flags for reading from the bitmap to be displayed on the channel.
These are normally for a pixel mode transfer. The main channel also supports
MPEG-2 video images. To set up an MPEG video image in the main channel,
set the DMA flags as follows: bits 16-23 are the width of the frame buffer in
macroblocks (in other words, the width divided by 16); bits 14-15 must be set
to 2 (for MCU transfers); bits 4-7 must be set to 0; and bit 0 is 0 for progressive
source material and 1 for interlaced source material. Note that not all BIOSes
support interlaced source material properly.

base The base address in memory (SDRAM) of the bitmap to be displayed on the
channel. For MPEG images (supported on the main channel only) this must be
the address of the luma data, with the chroma data immediately following it in
memory.

dest xoff The horizontal offset for the screen image, in pixels. If this is -1, then
the offset will be calculated automatically to center the image horizontally.

dest yoff The vertical offset for the screen image, in pixels. If this is -1, then the
offset will be calculated automatically to center the image vertically.

dest width The width of the channel on screen, in pixels.

dest height The height of the channel on screen, in pixels.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 34



src xoff The horizontal offset into the source bitmap for the displayed image. Only
a portion of the source bitmap needs to be displayed. This field is an integer
giving the offset in pixels.

src yoff The vertical offset into the source bitmap for the displayed image. Only
a portion of the source bitmap needs to be displayed. This field is an integer
giving the offset in pixels.

src width The width of the source image to be displayed. Starting from src xoff,
this many pixels will be fetched and will be scaled up (or down) to fit into
dest width pixels on screen. This field is an integer giving the width in pixels.

Note that the overlay channel only supports 1-1 and 2-1 scaling, therefore
src width must be either the same as dest width, or be one half of it.

src height The height of the source image to be displayed. Starting at src yoff,
this many lines of pixels will be fetched and will be scaled up (or down) to fit
into dest height lines on screen. This field is an integer giving the height in
pixels.

clut select This field is used only when a 4 bit per pixel bitmap is being displayed,
and selects which 16 entries from the 256 entry CLUT to use for the display.
clut select gives the index of the first of the 16 CLUT entries to use.

alpha This field is used only when a 16 bit per pixel bitmap is being displayed,
and gives the alpha value to use at each pixel. This has an effect only for the
overlay channel; for the main channel, this value must always be set to 0. Note
that 4, 8, and 32 bit per pixel bitmaps already contain an alpha value (either
explicitly, or implicitly in the CLUT) for each pixel.

vfilter The vertical filter to use when displaying this channel on screen.

hfilter The horizontal filter to use when displaying this channel on screen. This
field is currently ignored by the BIOS; the hardware has a fixed horizontal filter
for the main channel, and no filter for the overlay channel.

reserved This space is reserved for future expansion, and must be filled with ze-
ros.

10.2 Video Format Restrictions

In the present version of the BIOS, the following restrictions exist:

1. Only the main channel may display MPEG pixels.

2. For MPEG format output (supported on the main channel only) the src xoff
and src yoff fields must be 0, and src width and src height fields must
be the entire MPEG frame buffer. The base structure must point at the luma
data for the frame buffer, and the chroma data must immediately follow the
luma data in memory.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 35



3. Only the OSD channel may have 4 or 8bpp displays; hence, the clut select
field is meaningful only for the OSD channel.

4. For an 8bpp CLUT based channel, src width and src xoff must both be
even. For a 4bpp CLUT based channel, they must both be multiples of 4.

5. On the OSD channel, the destination width must either be equal to the source
width, or be twice the source width.

6. On the main channel, the destination width and source width may be arbitrary.
However, beware that shrinking an image (i.e. having dest width less than
src width place a demand on main bus bandwidth proportional to the ra-
tio of the two widths. In practice with current hardware it is not practical to
shrink more than 2:1, so src width should not be more than twice as big as
dest width.

7. For both the main and OSD channels, the source and destination heights must
be even (a multiple of 2).

8. It is the caller’s responsibility to ensure that the various xoff, yoff, width,
and height fields are set properly.

9. The hfilter field must be set to VID HFILTER 4TAP for the main channel,
and to VID HFILTER NONE for the overlay channel.

10. The vfilter flag may be one of VID VFILTER NONE, VID VFILTER 2TAP,
or VID VFILTER 4TAP. However, please note that filtering a CLUT based im-
age is highly unlikely to work as desired, so for all practical purposes if the OSD
channel is set to display a CLUT image then the vfilter flag for it must be
set to VID VFILTER NONE.

10.2.1 Frame Buffer Widths

The hardware restricts frame buffer widths to certain sizes, based on the number
of bits per pixel (BPP) and whether or not the DMA CLUSTER BIT is set in the DMA
flags for the frame buffer. In the table below, wid is the value which the width must
be a multiple of, and max is the maximum width.

CLUSTER=0 CLUSTER=1
BPP wid max wid max

4 32 4096 64 8192
8 16 2048 32 4096

16 8 1024 16 2048
32 8 512 8 1024

For example, a 16 bit per pixel frame buffer with DMA CLUSTER BIT clear must
be a multiple of 8 pixels wide, and may be at most 1024 pixels wide.

Note that it is (usually) possible to display a subwindow of the frame buffer, so the
source data need not occupy the entire frame buffer. For example, to display a 126

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 36



pixel wide source window, one could allocate a 128 pixel wide frame buffer and then
set up the video channel with src xoff equal to 0 and src width equal to 126.

For MPEG format displays, the width must be a multiple of 16 pixels and may
be at most 1024 pixels wide. It is not possible to display a subwindow of an MPEG
frame buffer; the entire frame buffer must be displayed.

10.2.2 Frame Buffer Heights

Ordinary pixel frame buffers must be a multiple of 8 pixels high if DMA CLUSTER BIT
is clear, and a multiple of 16 if it is set. It is possible to display a subwindow of a pixel
mode frame buffer, for example the first 198 lines out of 200.

MPEG frame buffers must always be a multiple of 16 pixels high, and the entire
frame buffer must be used as a source.

10.3 VidConfig

#include <nuon/video.h>
int VidConfig( VidDisplay * display, VidChannel * mainchannel, VidChannel * osd-
channel, void * reserved)

Configures the video display.
display is a pointer to a VidDisplay structure that specifies the overall video

display configuration. If it is NULL, then the overall video configuration remains un-
changed (so the last configuration set by VidConfig is used; the boot code calls
VidConfig once to initialize the display, so there is always a valid configuration to

use). Please note that on most machines it is not possible to modify the dispwidth,
dispheight, and progressive fields of the display structure; on most systems
these properties are always determined by the video mode (PAL or NTSC) and can-
not be changed.

mainchannel is a pointer to a VidChannel structure giving the configuration for
the main display channel. osdchannel is a pointer to a VidChannel structure giving
the configuration for the on-screen display (OSD) channel (a channel overlaid on top
of the main channel). If either is NULL, then the corresponding channel will not be
displayed.

VidConfig returns 1 on success, and 0 on failure. It will fail (and return 0) if any
reserved field is non-zero, or if an illegal value is requested for any parameter.

10.4 VidQueryConfig

#include <nuon/video.h>
int VidQueryConfig( VidDisplay * display)

Fills in the fields of the VidDisplay structure with the current values as set by
the last call to VidConfig. Returns an integer specifying what the current video
display system is; this is 1 for NTSC and 2 for PAL.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 37



10.5 VidSetup

void VidSetup( void * base, long dmaflags, int width, int height, int vfilter )
This is a simplified interface to the VidConfig function. It sets up the main video

channel to display a source image that is width by height pixels large, the base of
which (in SDRAM) is at address base. dmaflags are the DMA flags used to refer to
the source image (for either reading or writing; VidSetup can accept either). The
overlay channel is not enabled.

The output image is full screen, and has a vertical filter as specified by vfilter.
See the description of VidConfig for which vertical filters are permitted on the main
channel.

10.6 VidChangeBase

#include <nuon/video.h>
int VidChangeBase( int which, long dmaflags, void * base)

Changes the video display base for either the main or OSD video channel.
which determines the channel that is to be modified, either VID CHANNEL MAIN

or VID CHANNEL OSD.
dmaflags specifies the flags for reading from a channel; flags for writing to the

frame buffer may also be used here, since VidChangeBase will always set the read
bit. In the current BIOS release, the dmaflags must always be for a pixel mode DMA.

base specifies the base address of the frame buffer.
The video display will not actually be modified until the next vertical blanking

interval. The VidSync function may be used to wait for this.
VidChangeBase returns 1 on success, 0 if the specified channel is not currently

active or if any other error is detected.

10.7 VidChangeScroll

#include <nuon/video.h>
int VidChangeScroll( int which, int xoff, int yoff )

Changes the X and Y offsets into the source frame buffer. The changes do not
take place immediately; instead, they are queued and will be executed at the time
of the next vertical blanking interval. If two or more calls to VidChangeScroll are
made in the same field, only the last call will take effect.

which determines the channel that is to be modified, either VID CHANNEL MAIN
or VID CHANNEL OSD.

xoff and yoff are integers giving the pixel offset of the new source origin. It is the
caller’s responsibility to ensure that xoff and yoff are valid.

VidChangeScroll returns 0 if the specified channel is not currently active.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 38



10.8 VidSync

#include <nuon/video.h>
long VidSync( int n)

Wait for some number of vertical blanking intervals.
If n is a positive integer, then the VidSync function waits for that many fields to

pass before returning. Each field occupies 1/60 of a second for NTSC, and 1/50 of a
second for PAL video output.

If n is 0, and a vertical blanking interval has occurred since the last call to
VidConfig, VidChangeBase, or VidChangeScroll, then VidSync will return im-

mediately; otherwise it will wait for one vertical blanking interval to occur. When it
returns, VidSync returns the (new) value of the BIOS internal field counter giving
the number of fields elapsed since the last reset.

If n is -1, then VidSync will not wait at all, but will immediately return the current
value of the BIOS internal field counter.

If n is -2, the VidSync will wait until a time when it would be convenient to hand
video over to the presentation engine. The exact video line will depend on the BIOS
and PE versions. This internal functionality of VidSync is intended for the DVD
player and similar system applications, and should not be used by games.

10.9 VidSetBorderColor

#include <nuon/video.h>
void VidSetBorderColor( unsigned int color )

Set the (32 bit) border color to color. The border color is displayed wherever there
is active video but neither the main channel nor overlay channel are active.

10.10 VidSetCLUTRange

#include <nuon/video.h>
void VidSetCLUTRange( int i, int num, unsigned long colors[])

Update a set of consecutive entries in the VDG color look up table with the spec-
ified colors. i is the index of the first CLUT entry to update. num is the number of
consecutive entries to fill. colors is an array of num 32 bit colors (in YCrCbAlpha
format) to use to set CLUT entries i through i+num-1 inclusive.

The VDG CLUT is used for 4 and 8 bit per pixel display modes, in which the
pixel value is an index into the CLUT. These modes are only allowed in the overlay
channel; the main channel has no CLUT mode. The CLUT is not used in 16 and 32
bit per pixel display modes.

10.11 VidSetOutputType

#include <nuon/video.h>
void VidSetOutputType( int type )

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 39



Select video output type. If type is kVidOutputComposite, the video output will
be optimized for composite video; if it is kVidOutputSvideo, it will be optimized for
S-Video output. If it is kVidOutputDefault, an appropriate value will be chosen
based on the settings provided by the user.

This interface is provided for the DVD player and similar system applications. It
is very unlikely that “normal” applications like games will ever need to make this call.
At the time a game is started, the video output will already have been initialized by
the firmware to be the value selected by the user as optimal.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 40



11. Controllers and Other Serial Devices
The NUON BIOS supports up to 8 joysticks plus one infrared controller. All con-
trollers present a common interface, which may be extended for specialized con-
trollers (such as steering wheels or “6 degrees of freedom” joysticks).

The BIOS continually monitors the state of all controllers connected to the sys-
tem, and puts the data associated with them into the global array pointed to by
Controller. This array has 9 entries. Entry 0 is for the infrared remote (if present).

The other entries are for joysticks plugged into the two controller ports on the con-
sole. Each port could have up to 4 controllers plugged into it through the use of a
multi-port adaptor. Therefore, entries 1–4 are for “Port 1”, and entries 5-8 are for
“Port 2”. If no multi-port adaptors are in use, then only entries 1 and 5 could actually
have joysticks plugged in; thus a “typical” configuration might have player 1 using
Controller[1] and player 2 using Controller[5].

11.1 Performance

Reading a large number of joysticks (particularly joysticks with analog pots) can im-
pose significant overhead on the system, since it requires that high speed serial bus
packets be sent to each joystick. There are two ways to reduce the impact on applica-
tions of the joystick processing. One is for the application to call ControllerPollRate
to set the polling rate for the serial bus to a lower value. (This option is practical if the
application is not using a modem or other high speed device connected to the bus.)

Another way to improve performance is to clear all of the analog bits in the
properties fields of any controllers for which analog joystick data is not actually
being used by the application. The analog bits are all of the properties bits except
CTRLR STDBUTTONS, CTRLR DPAD, CTRLR SHOULDER, and CTRLR EXTBUTTONS.

After all analog related property bits are cleared, the BIOS will no longer attempt
to read the corresponding analog parts of the corresponding joystick. Restoring the
bits will again enable the analog device to work. If the application wishes to do this,
it must save the property bits before clearing any of them.

Note that if the joystick is unplugged and then plugged in again all of the property
bits (including the analog ones) will be reset, and will have to be cleared again.

11.2 Data Structures

Each controller entry has the following format:

#include <nuon/joystick.h>

typedef volatile struct
{
// scalar 0

unsigned int changed : 1;
unsigned int status : 1;

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 41



unsigned long manufacture_id : 8;
unsigned long properties : 22;

// scalar 1
unsigned short buttons;

union
{

signed char xAxis;
signed char wheel;
signed char paddle;
signed char rodX;

} d1;

union
{

signed char yAxis;
signed char rodY;

} d2;

// scalar 2
union
{

signed char xAxis2;
unsigned char throttle;
unsigned char throttle_brake;

} d3;

union
{

unsigned char yAxis2;
unsigned char brake;
signed char rudder;
signed char twist;

} d4;

union
{

signed char quadjoyX;
signed char mouseX;
signed char thumbwheel1;
signed char spinner1;
signed char reelY;

} d5;

union
{

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 42



signed char quadjoyY;
signed char mouseY;
signed char thumbwheel2;
signed char spinner2;
signed char shuttle;

} d6;
// scalar 3

unsigned long remote_buttons;
} ControllerData;

extern ControllerData *_Controller;

The meaning of the fields is as follows:

changed If this is 0, then the status has not changed. If it is 1, then the status
has changed (that is, the controller has been plugged in or unplugged) or else
the controller itself has changed in some way which may require an update of
its device driver since the last time the controller was read by the BIOS.

Thus, for example, if a new joystick is plugged in during play of a game, the
BIOS will set both the changed and status bits of the corresponding en-
try in the Controller. When the game notices that the changed bit is set,
it should call DeviceDetect to configure the new joystick (or other device).
DeviceDetect will clear the changed bit.

Note that while changed is set, the data in the rest of the structure may not
be valid. For this reason it is very important to call DeviceDetect when the
change is noticed.

status If this is 0, then the joystick is not connected and no data is valid. If it is 1,
and changed is 0, then the joystick is functioning properly and the data in the
rest of the structure is correct.

manufacturer id This field is reserved for manufacturers, and may be used to
give further information about the controller, for example to indicate that some
special extended information is available.

properties This field indicates information about the specific controller, and about
how to interpret the remaining fields in this structure. The following bits are
defined:

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 43



Symbolic Name Meaning
CTRLR STDBUTTONS Standard buttons: “A”, “B”, “Start”, and “Select”, are

available in buttons.
CTRLR DPAD 8 way (4 switch) directional D-pad buttons are available

in the buttons field.
CTRLR SHOULDER Left and right shoulder triggers are active in the

buttons field.
CTRLR EXTBUTTONS For all controllers except CTRLR MOUSE, indicates ex-

tended standard buttons: “C”, “D”, “E”, and “F” are
present in the buttons field. For CTRLR MOUSE, indi-
cates the presence of a third center button mapped to
“C” in the buttons field.

CTRLR ANALOG1 Primary analog stick; if the CTRLR QUADJOY1 bit is also
set, indicates (to the BIOS) that the controller is really a
Quadrature device, and that the BIOS should cook the
data to look like an analog device. The joystick position
may be read from the d1.xAxis and d2.yAxis fields.

CTRLR ANALOG2 Secondary analog stick, may be read from the
d3.xAxis and d4.yAxis fields.

CTRLR QUADJOY1 Quadrature joystick device. The quadrature motion val-
ues are available in d5.quadjoyX and d6.quadjoyY
fields. If the CTRLR ANALOG1 bit is also set, the BIOS
will cook the data to look like an analog device and place
the results into d1.xAxis and d2.yAxis. Applications
should check CTRLR ANALOG1 and if it is set use the
analog values.

CTRLR WHEEL Analog steering wheel – “A” and “B” buttons are also
assumed present. Additional buttons may be indicated
by the appropriate flag bits. Data for the wheel is in
d1.wheel.

CTRLR PADDLE Paddle controller. “A” and “B” buttons are assumed
present in buttons, and the paddle position is in
d1.paddle.

CTRLR THROTTLEBRAKE Accelerator / Throttle and brake returned together in
same value (in the d3.throttle brake field). Nega-
tive values indicate brake, positive values indicate throt-
tle.

CTRLR THROTTLE Accelerator / Throttle, value in d3.throttle.
CTRLR BRAKE Brake; value is in d4.brake.
CTRLR RUDDER Rudder; value is in d4.rudder.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 44



Symbolic Name Meaning
CTRLR TWIST Analog twist control – This would indicate a joystick with

a analog twist axis. Usable as a flight rudder. The value
is in the d4.twist field.

CTRLR MOUSE Mouse device; has buttons “A” (left button), “B” (right but-
ton), and optionally (if CTRLR EXTBUTTONS is set) a “C”
button ( middle button) in the buttons field. Quadra-
ture motion information returned in the d5.mouseX and
d6.mouseY fields.

CTRLR TRACKBALL Trackball device; otherwise similar to CTRLR MOUSE
(q.v.).

CTRLR QUADSPINNER1 A quadrature spinner wheel like the Tempest arcade con-
troller or an old Atari 2600 driving controller. Only two
buttons (“A” and “B”) are expected to be available, but if
CTRLR EXTBUTTONS is set then a third “C” button is also
available. The quadrature motion information is returned
in the d5.spinner1 field. Positive movement values
indicate clockwise rotation.

CTRLR QUADSPINNER2 A quadrature spinner wheel with motion information
available in the d6.spinner2 field. Otherwise this is
like CTRLR QUADSPINNER1 (q.v.).

CTRLR THUMBWHEEL1 A quadrature thumbwheel. This is usually combined
with other attributes. If no other attributes are selected,
then only two buttons (“A” and “B”) are available, unless
CTRLR EXTBUTTONS is also set, in which case a third
(“C”) button is also available. Quadrature motion infor-
mation is returned in the d5.thumbwheel1 field.

CTRLR THUMBWHEEL2 A quadrature thumbwheel with quadrature motion infor-
mation available in d6.thumbwheel2. Otherwise simi-
lar to CTRLR THUMBWHEEL1.

CTRLR FISHINGREEL A fishing reel controller. “A” and “B” buttons are as-
sumed present. Accelerometer information for the rod is
returned in the d1.rodX and d2.rodY fields. Quadra-
ture motion information for the reel is returned in the
d5.reelY field.

CTRLR REMOTE Infrared (or RF) remote controller. Buttons are in the
buttons and remote buttons fields.

CTRLR EXTENDED Device supports extended information calls, and may
have additional capabilities such as force feedback or
downloadable information.

Some of the bits in the properties field are writable; see joystick perfor-
mance (section 11.1) for how to disable the polling of analog devices.

buttons This field indicates which of the standard joystick buttons are currently
pressed. Bits that are set to 1 are pressed; bits set to 0 are not. The following
buttons are defined as “standard joystick buttons”:

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 45



Symbolic Name Meaning
JOY A Primary fire button (right thumb)
JOY B Secondary fire button (right thumb)
JOY C Right thumb button 3
JOY D Right thumb button 4
JOY E Right thumb button 5
JOY F Right thumb button 6
JOY START Start/Play button
JOY RIGHT D-pad right
JOY UP D-pad up
JOY LEFT D-pad left
JOY DOWN D-pad down
JOY R right shoulder button
JOY L left shoulder button
JOY Z trigger button

remote buttons Additional buttons. The interpretation of these buttons depends
on the controller. For infrared remote (IR) controllers there is a standard set of
buttons defined, as follows:

Symbolic Name Meaning
IR STOP stop button
IR SETUP setup button
IR ENTER enter button
IR RESUME resume button
IR DISPLAY display button
IR MENU menu button
IR TOP top menu button
IR ANGLE angle button
IR SUBTITLE subtitle button
IR AUDIO audio control button
IR ZOOM zoom button (may also set d2)
IR VOLUME volume button (usually also sets d2)
IR SKIP NEXT skip to next chapter
IR SKIP PREV skip to previous chapter
IR FF fast forward
IR FR fast reverse
IR SF slow forward
IR SR slow reverse
IR CLEAR clear button
IR KEY 0 ... IR KEY 9 numeric keys
IR EJECT eject button

Please note that some keys found on an infrared remote will correspond to joy-
stick keys found in the buttons field (for example, the “enter” key will typically
map to JOY A and the “play” key to JOY START).

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 46



Also note that some remotes may have a “shuttle” or similar multi-position con-
trol device. The driver for such remotes will cause some appropriate button
bits to be set, and put a parameter into d6.shuttle to indicate a value for the
shuttle. For example, it might set IR FF with a value in d6.shuttle of 32 to
indicate a very fast forward.

Similarly, the IR VOLUME and IR ZOOM bits will generally be accompanied by
values in d6.shuttle to indicate the desired change in volume and/or zoom.

The entries in Controller may be read by the application at any time.

11.3 Implementation

The Controller variable is actually a pointer which is initialized in the C run time
startup code (crt0.o) by a call to ControllerInitialize. This is transparent to the
user application. In the unlikely event that your application is entirely written in as-
sembler and does not link with crt0.o, then you will need to declare the variable
Controller and initialize it with the value returned by ControllerInitialize (or make

some equivalent arrangements).

11.4 ControllerInitialize

#include <nuon/bios.h>
ControllerData * ControllerInitialize(void)

Initializes the controller system and returns a pointer to the BIOS Controller ar-
ray. This function is called automatically by the C run time initialization code, so it
need not be called by user applications.

11.5 ControllerExtendedInfo

#include <nuon/joystick.h>
void * ControllerExtendedInfo( int slot)

Returns a pointer to any extra information associated with the serial device (usu-
ally a controller) which is in slot slot. This extra info is device dependent.

ControllerExtendedInfo will return 0 if no extra information is available (which
will be the usual case).

11.6 ControllerPollRate

#include <nuon/joystick.h>
void ControllerPollRate(int n)

This function will set the rate at which the NUON will poll the joystick bus for
status. The number n is in milliseconds in the range 0 to 15, and represents one
less than the number of milliseconds between poll attempts. Thus, a parameter of

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 47



0 means that the joystick is polled every millisecond, and 4 means that it is polled
every 5 milliseconds. The actual poll rate is determined by the system clock, which
on existing systems has a 200 Hz granularity. Thus, sensible values for n are 0, 5,
10, and 15. The larger the poll rate interval, the fewer resources are used by the
joystick serial bus, but the lower the rate which characters may be received. High
speed modems require a poll rate of 0 (the default); ordinary joysticks perform well
at poll rates of 5 or 10.

11.7 DeviceDetect

#include <nuon/bios.h>
int DeviceDetect( int slot)

Whenever a new device is plugged in to the serial device chains, the BIOS will set
the changed bit in the corresponding Controller array slot. When the application
notices that this bit has been set, it should call DeviceDetect to determine the exact
characteristics of the device and to configure it for proper operation. After the call to
DeviceDetect the changed bit will be cleared, and the status and properties

bits in the Controller array element will be properly configured for whatever device(s)
are currently occupying that slot in the array.

slot is the index in the Controller array of the device that has changed.
DeviceDetect returns -1 if in fact Controller[slot] has not changed, and

otherwise returns the new value of the status bit for that controller slot.
Please note that devices other than controllers may occupy positions on the serial

device chain. Such devices will have a status value of 0, since there is no controller
in that position.

11.8 BiosIRMask

#include <nuon/bios.h>
unsigned long BiosIRMask( int mode, unsigned long mask)

Controls which keys on the IR remote are handled automatically by the BIOS,
and which will be passed to applications. On some NUON players, keys like “Power”
and “Eject” may not take effect automatically, but rather send events to the NUON
system; on other players, these keys are handled automatically by other parts of the
firmware (e.g. front panel micros).

On systems for which the keys send events, the BIOS normally handles the
events transparently to the application. It is possible (but usually unwise) to override
this handling, and BiosIRMask provides this capability. Most applications should
use the built in BIOS handling, since this ensures a uniformity of look and feel across
platforms and applications.

mode is 0 to report the current mask value (the keys for which the BIOS handles
events automatically) and 1 to change this value. mask is a bitmap of the remote
buttons which the application wants the BIOS to handle automatically. This is only
used if mode is 1, and should typically be formed from a previous return value from
BiosIRMask. The return value is the new mask which the BIOS will use. The bit

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 48



mask is constructed using the same values as returned in the remote buttons
field of the CONTROLLERS structure

If the application requests the BIOS to handle keys which it is not prepared to
handle, it will ignore those bits in the mask and set them to 0 in the returned value.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 49



12. Time Related Functions

12.1 TimeOfDay

#include <nuon/time.h>
int TimeOfDay( struct currenttime * tm, int getset)

This function gets or sets the current time of day according to the “wall clock”.
If the parameter getset is 0, then the structure pointed to by tm is filled in with the
current time. This structure contains (at least) the following fields:

sec Seconds past the minute, in the range 0 – 59.

min Minutes past the hour, in the range 0 – 59.

hour Hours since midnight, in the range 0 – 23.

wday Day of the week, in the range 0 (Sunday) – 6 (Saturday).

mday Day of the month, in the range 1 – 31.

month Month, in the range 1 (January) – 12 (December).

year Year, in the range 2000 – 9999. (The BIOS is not guaranteed to be Y10K
compliant.)

isdst A flag indicating whether or not Daylight Savings Time is in effect. The value
is 0 if DST is not in effect, positive if it is, and -1 if the hardware clock does not
keep this information.

timezone The current time zone, expressed as the minutes west of the Greenwich
meridian (negative for time zones east of Greenwich). Thus, for example, East-
ern Standard Time, which is 5 hours west of Greenwich, would be stored as
300 (5*60). Note also that the timezone field always stores the standard time
zone; to represent Eastern Daylight Savings Time, timezone still contains
300, but isdst is set to 1.

If getset is 1, then the hardware clock is set from the structure pointed to by tm.
TimeOfDay returns 0 if successful, or -1 if there is an error. For example,

if there is no accessible hardware clock present on this machine and the software
clock has not yet been initialized, any TimeOfDay calls to retrieve the time will return
-1 until the time has been initialized by a “set” call to TimeOfDay.

12.2 TimeElapsed

#include <nuon/time.h>
unsigned long TimeElapsed( long * secs, long * usecs)

Determine the time elapsed since the system was last reset. The number of
seconds elapsed is written into the long word pointed to by secs, if this is not NULL.
The number of microseconds elapsed within the second is written into the long word

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 50



pointed to by usecs, if this is also not NULL. Please note that the BIOS timer is not
guaranteed to be microsecond accurate; on most platforms it will however be more
than millisecond accurate (but see below for bugs on some early BIOS versions).

In any event, TimeElapsed returns the number of milliseconds since boot. If the
usecs parameter is NULL then the milliseconds returned will be accurate only to the
system timer resolution (so it may be off by up to 4 milliseconds).

Note that a bug in some early versions of the BIOS may cause TimeElapsed to
fail to return a proper count of microseconds when usecs is not NULL. When this bug
is triggered, the count of microseconds may actually be negative, and will certainly
be wrong; and the milliseconds returned by TimeElapsed will also be wrong. A
patch to work around this will be incorporated into the SDK, but will result in usecs
being accurate only to system timer resolution (which is 5 milliseconds).

12.3 TimerInit

#include <nuon/time.h>
int TimerInit( int n, int rate)

Initializes one of the hardware timers. n specifies which timer to initialize. rate
specifies the number of microseconds between interrupts. After this call, the timer
interrupt for timer n will be triggered every rate microseconds. It is up to the appli-
cation to catch this interrupt with the IntSetVector call and perform the appropriate
actions.

TimerInit will return 1 on success, and 0 if an attempt is made to initialize a
reserved timer (namely timer 0, which is reserved for BIOS use) or a timer that does
not exist.

12.4 TimeToSleep

#include <nuon/time.h>
void TimeToSleep(long msecs)

Waits for msecs milliseconds to pass.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 51



13. Media and Drive Functions
The goal of the media related functions in the BIOS is to allow DVD and set-top
applications to access their data in similar ways, despite many differences in the data
rates and storage capabilities of local storage and network storages. It also allows
us to provide emulation services, running on PC’s, for debugging of applications.

In general, applications will be encouraged to place all of their data in one “file”,
which will be a physical file on a DVD or CD, or an abstract network connection in
a set top box environment. This will help to hide the differences between systems,
and will also allow for efficient use of and access to local media (where available).
Avoiding the use of a file system (except for the initial open) will allow the BIOS to
make use of various media-specific optimizations; for example, to avoid disk seeks
or pause/restart sequences.

13.1 MediaOpen

#include <nuon/mediaio.h>
int MediaOpen( int device, const char * name, int mode, int * blocksize )

Initializes and opens a device for access by the media library. device specifies
the type of device to be opened. This may be one of the constants given below:

MEDIA BOOT DEVICE The device from which the application was loaded.
MEDIA DVD The local DVD player, if it exists.
MEDIA CABLE The cable network, if it exists.
MEDIA EMULATOR The PC debug emulator.
MEDIA NVRAM Non-volatile memory.

name is a pointer to a string that gives further information for file system access
on the device, if applicable. Normally this will be either NULL or an empty string,
indicating that the default file for the system should be used. This parameter would be
used, for example, to open a specific file on the PC when using the debug emulator.

mode describes how the application wishes to use the opened device. In the
present version of the BIOS, this should always be 0; future uses of mode are TBD.

blocksize is a pointer to an integer, which is filled in with the size of blocks on this
device.

Returns a non-zero handle on success, or a 0 on failure.

13.2 MediaClose

#include <nuon/mediaio.h>
int MediaClose( int handle )

Closes a handle previously returned by MediaOpen.

13.3 MediaGetDevicesAvailable

#include <nuon/mediaio.h>

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 52



long MediaGetDevicesAvailable(void)
Returns a bitmapped set of flags indicating which media devices are available

on this system. See the MediaOpen function for details on which devices might be
supported.

Most programs will not need this function, simply using MEDIA BOOT DEVICE as
the device for media I/O.

13.4 MediaGetInfo

#include <nuon/mediaio.h>
int MediaGetInfo( int handle, struct MediaInfo * info) Gets information about the
media device whose handle is handle. info is a pointer to a MediaInfo structure.
This structure contains the following fields:

sectorsize An integer giving the size of blocks on the device, in bytes. Typically
this will be 2048 bytes, but some devices (such as networks, hard disks, and
particularly flash memories) may have different block sizes.

device The device corresponding to the handle. This is the value originally passed
to MediaOpen when the handle was first created.

datarate An estimate of the number of bytes that can be read from the device
per second. This may or may not be accurate, particularly for network-based
devices where the actual throughput will vary depending on network load.

MediaGetInfo returns 0 if it is successful, and an error code if not (for example,
if handle is invalid).

13.5 MediaRead

#include <nuon/mediaio.h>
int MediaRead( int handle, int mode, long startblock, long blockcount, void * buffer,
void (*callback)(int status, long blocknum))

Reads sectors from the current device. handle is a handle returned by a previous
MediaOpen call. The mode parameter specifies how callbacks are to take place.

If this is MCB END then the callback will be made only at the end of the transfer or
if there is an error. If it is MCB EVERY then the callback is made for every block
transfered. startblock and blockcount give the starting block for the transfer and the
number of blocks to read, respectively. The block size is returned by the MediaOpen
function, and may also be obtained via MediaGetInfo. buffer is a pointer to memory
(in either SDRAM or system RAM) into which the data will be written. If the memory
is to be accessed via the data cache, see the important note below.

The callback function is called either at the end of the transfer or after every block.
It is also called if an error is detected. Its main use is to allow the application to keep
track of what has been read (for example, to show a progress bar). The parameters
to callback are:

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 53



status This will be the mode parameter originally passed to MediaRead, if opera-
tion is proceeding normally, or else MCB ERROR if an error has occurred.

blocknum The number (relative to the start of the read) of the last block that was
read before the callback. This is useful mainly when the callback is happening
after every block (mode is MCB EVERY).

The spinwait function is provided as a simple callback function.
MediaRead returns a 0 on success, or -1 if it fails (for example, if there is no

room in the queue for pending reads).
Important: The MediaRead function may not necessarily update the data cache

correctly with the data that has just been read. For this reason, the buffer parameter
must be aligned on a data cache line boundary (32 bytes). Also, the data cache for
the buffer region should be marked as invalid after the MediaRead has completed.
This may be done with the DCacheInvalidateRegion call.

13.6 MediaWrite

#include <nuon/mediaio.h>
int MediaWrite( int handle, int mode, long startblock, long blockcount, void * buffer,
void (*callback)(long status, long blocknum))

Writes sectors to the current device. This call is similar to the MediaRead func-
tion, except that the data is written to the device rather than read from it. If the device
is read-only, the MediaWrite will return -1 when first called.

13.7 spinwait

#include <nuon/mediaio.h>
long spinwait(long status, long blocknum)

A simple callback function for MediaRead or MediaWrite. spinwait sets the
global variable MediaWaiting to 0 when it is called with status indicating a successful
read, and to a negative error number when it is called with status indicating an error.
spinwait has no purpose other than as a callback for MediaRead or MediaWrite.

Please note that the BIOS uses spinwait internally in the implementation of file
system access functions and in the UDF filesystem read code. Do not use spinwait
yourself if you make use of any of these services.

13.8 MediaShutdownMPE

#include <nuon/mediaio.h>
void MediaShutdownMPE(void)

The BIOS must use an auxiliary MPE to run the DVD disk drive. Typically this is
done by allocating the top 4K of both instruction and data memory on MPE 0, and
running the drive management code there. Applications are free to use the bottom
4K, with some restrictions (TBD). However, there may be times when the application

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 54



needs to use all of MPE 0, and does not need to make any media calls. In such
situations, the application may make a MediaShutdownMPE call to free as many
MPE resources as possible. After the MediaShutdownMPE call, no media calls
(including indirect calls caused by the streaming audio library) may be made until
after a successful MediaInitMPE call has been made.

PLEASE NOTE: MediaShutdownMPE has the side effect of stopping the me-
dia MPE completely and marking it as free. Applications should be sure that any
code they have running on the media MPE (for example because they have called
MPEAlloc with the MPE HAS MINI BIOS flag) has finished before they call MediaShutdownMPE.

13.9 MediaInitMPE

#include <nuon/mediaio.h>
int MediaInitMPE(void)

Initialize the BIOS drive handling code running on another MPE after a call to
MediaShutdownMPE (q.v.). MediaInitMPE will attempt to allocate an MPE for the

BIOS to use to run drive code. It will prefer to allocate “half” of MPE 0 (leaving some
room for user code there). Future BIOS versions will try other MPEs if MPE 0 is not
available. If no MPE could be allocated, then MediaInitMPE returns -1; in this case
the application must free any MPEs it owns and try again. When MediaInitMPE
succeeds, it returns the number of the MPE which BIOS code is running on. This
MPE is marked allocated by the BIOS, so the application does not need to do any-
thing special with the returned value.

13.10 DiskGetTotalSlots

#include <nuon/mediaio.h>
int DiskGetTotalSlots(void)

This returns the number of disk slots available on this system. This will be 0 on
set top boxes with no drive attached, 1 on typical DVD players, and more than 1 for
DVD players with a carousel.

13.11 DiskChange

#include <nuon/mediaio.h>
int DiskChange( int flags, int DestSlot, unsigned int * NewSlot)

Attempt to move the disk carousel to a new disk slot, or determine the current
disk slot.

flags controls how the other parameters are interpreted. If this is SLOT IS DELTA,
then DestSlot is a signed delta to the current slot; if it is SLOT IS ABS then it is an
absolute slot number (where 1 is the first slot). If DestSlot is 0, then the carousel will
not be moved; do this to inquire what the current slot is.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 55



NewSlot, if nonzero, will point to a 32 bit integer where the new disk slot number
(or current disk slot number, if DestSlot is 0) will be placed. This number is 1 based
and is valid only if the return value from DiskChange is non-negative.

If DestSlot is 0, DiskChange will always return 0. Otherwise, DiskChange will
return one of the following values:

0 The carousel was moved to the desired slot, and it contains a DVD with a valid
NUON.DAT file.

1 The carousel was moved to the desired slot, it contains a DVD, but no NUON.DAT
file was found.

2 The carousel was moved to the desired slot, but it contains media other than a
DVD (e.g. an audio CD).

3 The carousel was moved to the desired slot, and that slot is empty.

4 The carousel was not moved, because the requested slot is the same as the
current slot.

-1 flags was invalid.

-2 Invalid (out of range) DestSlot.

-3 Unable to determine current slot; carousel not moved.

13.12 DiskEject

#include <nuon/mediaio.h>
int DiskEject(void)

Issue a command to eject the disk tray. This function will only work on DVD
players and similar devices which actually have a disk. Note that the call may return
before the tray is actually open. In practice this should cause no problems: retracting
the tray again (with DiskRetract) should be done only after some signal from the
user that the disk has been changed.

DiskEject returns 0 on success (if the command to open the tray has success-
fully been queued). It returns -1 if there is no disk device present.

13.13 DiskRetract

#include <nuon/mediaio.h>
int DiskRetract(void)

Issue a command to retract the disk tray. This function will only work on DVD
players and similar devices which actually have a disk. Note that the call may return
before the tray is fully retracted. Any calls which attempt to access the drive while
the tray is still retracting will timeout and will have to be retried. It is a good idea to
wait for a second or two after the DiskRetract call has returned before attempting

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 56



such calls, since on some platforms it may take longer than this to recover from the
failed media calls.

DiskRetract returns 0 on success (if the command to close the tray has suc-
cessfully been queued). It returns -1 if there is no disk device present.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 57



14. Memory Management

14.1 Local MPE Memory

The BIOS must use some local memory for certain functions (such as interrupt ser-
vice routines). The memory left over may be used by applications and libraries. The
BIOS maintains a pool of “scratch space” which libraries and applications may use.
This scratch space is not guaranteed to be preserved across library or (some) BIOS
function calls, so it should be used only in “leaf” functions or in between function
calls.

The BIOS DMA, comm bus, and time functions are guaranteed not to touch the
local scratch memory. Other BIOS calls (including media calls) might modify the
scratch memory, so it is not safe to assume that it is preserved across other BIOS
calls.

14.2 MemLocalScratch

#include <nuon/bios.h>
void * MemLocalScratch( unsigned int * size )

Finds the size and location of “scratch” memory in local data RAM to be used by
libraries and by applications. size, if non-zero, points to an integer which will be filled
in with the number of bytes of local memory available. The return value is a pointer
to the first byte of the scratch memory. This memory is vector aligned, and at least
512 bytes long.

14.3 SDRAM and System RAM

14.4 MemAlloc

#include <nuon/bios.h>
void * MemAlloc( unsigned long size, unsigned align, unsigned flags)

Allocates memory from system RAM or SDRAM. size is the amount of memory
to allocate (in bytes). align is a memory alignment requirement; for example, to
allocate on a long word boundary, set align to 4. If align is 0, then the default (vector)
alignment is used. flags is used to control how the allocation is done. If flags is
kMemSDRAM, then SDRAM is allocated. If it is kMemSysRam, then system RAM is
allocated. flags may also be set to the logical or of those two values, in which case
MemAlloc first tries to allocate from system RAM, and if that fails tries SDRAM.

MemAlloc returns a pointer to the newly allocated memory, or 0 if the allocation
failed.

Please note that in the default C run time environment the C compiler has al-
ready allocated system RAM, so the C function malloc (or its relatives) should be

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 58



used to allocate memory from system RAM. MemAlloc should be used only to al-
locate memory from SDRAM; in other words, the flags parameter should always be
kMemSDRAM.

Also note that the BIOS does not flag portions of SDRAM allocated in the ap-
plications COFF file. Thus, MemAlloc may return memory that the application is
already using! To avoid this bug, place any SDRAM sections in the COFF file at the
top of SDRAM (up to 0x407fffff).

14.5 MemFree

#include <nuon/bios.h>
void MemFree(void * ptr )

Frees a block of memory previously allocated by MemAlloc. ptr is the pointer
returned by MemAlloc.

14.6 MemAdd

#include <nuon/bios.h>
void MemAdd( unsigned long baseaddr, unsigned long size, unsigned flags)

This functions adds a block of memory to the BIOS memory allocator. It should
not, generally, be called by applications. It is provided for the use of device drivers
for memory cards whose memory is directly accessible by MPE 3. baseaddr is
the base address at which the memory may be accessed (typically this will be on
the other bus). size is the size of the memory. flags is the kind of memory, either
kMemSysRam for system RAM, or kMemSDRAM for SDRAM.

14.7 MemInit

This is an internal BIOS function to initialize the memory system. It should not be
called by applications.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 59



15. Platform Control Functions
These functions serve as a basis for certain somewhat machine-specific settings
that are generally used to provide customization features to hardware manufacturers.
They are not appropriate for general use, and are not necessarily implemented on
any particular system. In the event that a function documented here is not supported,
it will return -1 and have no other effect.

15.1 StartImageValid

#include <nuon/bios.h>
int StartImageValid(void)

If the last attempt to write a new MPEG startup image was completed success-
fully, this function will return 1. If not, it will return zero. If the current system does
not support an MPEG startup image, it will return -1.

15.2 SetStartImage

#include <nuon/bios.h>
int SetStartImage(void * ptr )

Copies a 720x576 pixel MPEG image into a reserved block of flash ROM for
display during system boot-up. Returns 0 on success; 1 on (detected) failure, and -1
if unsupported.

15.3 GetStartImage

#include <nuon/bios.h>
void * GetStartImage(void)

Returns the address of the stored MPEG startup image, or -1 if unimplemented.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 60



16. Inside the BIOS
This chapter describes the internal organization of the BIOS. It attempts to provide a
rationale for the design of the BIOS, in order to aid future maintainers.

16.1 Memory Layout

The BIOS uses several sections of the RAM memory map, plus the system ROM
or flash. Within MPE 0, it uses (together with the audio libraries) the upper 4K of
each of iram and dtram to support reading from a disk and playing streaming audio.
In MPE 3, it uses 256 bytes at address 0x20300c00 in iram and 256 bytes at ad-
dress 0x20100c00 in dtram for DMA routines, cache invalidation code, and a few
other things. The 64K starting at 0x80000000 (in system RAM) is used for jump ta-
bles, BIOS internal data structures, and a few user-visible data structures. The area
beginning at 0x80760000 contains all other ram-resident BIOS code and data, as
well as a memory arena for downloaded device drivers and other required memory
allocation.

The Presentation Engine, when activated, uses the memory between address
0x804e0000 and the beginning of BIOS memory. The Presentation Engine is pre-
sent and active at application boot-time, unless it is overwritten during application
loading. In that event, it can be re-loaded and initialized by calling InitPE.

16.2 Bootup and Initialization

The BIOS is responsible for initializing the NUON chip, the board that the chip is
on, and itself. After initialization is complete, the BIOS loads and starts the bootup
application that is stored in the system ROM.

16.3 Devices

The various input/output devices that can be connected to a NUON system are all
abstracted through the device layer. This permits software to interact with devices
that were not yet designed when the software was written. Device drivers can be
either resident, meaning compiled into the BIOS when it was built, or downloaded
from the device itself and installed.

The three device driver types are File drivers, Media drivers, and Network drivers.
Any particular device will require a driver of at least one of the types. Some devices
will need all three. For example, the host PC for a development system can act as a
device providing all three types of services.

The fundamental operation of all of these is the same, but the particular services
offered varies with the type. All the installed drivers of a particular type are held in
a linked list. When a new instance of use of a device is initiated, the appropriate
chain is searched for a driver that can (or will) handle the request. That driver is then
associated with that use. When subsequent calls are made on that particular use,

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 61



the associated driver is called at the correct entrypoint for the requested service. In
the case of media devices, there is only one active device permitted at any particular
time, though formerly active devices may still be servicing queued requests. For the
other device types, each instance generates an entry in the system descriptor table,
called filelist. Later calls reference it via a handle.

16.3.1 File Drivers

The file driver structure is defined in the file "syscalls/fs.h". File drivers provide
support for the C library file manipulating functions close, fstat, ioctl, isatty, link,
lseek, lstat, open, read, stat, unlink, and write.

16.3.2 Media Drivers

The media driver structure is defined in the file "syscalls/media.h". Media
drivers provide support for the BIOS media functions described in section 13.

16.3.3 Network Drivers

The network driver structure is defined in the file "syscalls/fs.h". Network
drivers provide support for the library networking functions accept, bind, close, con-
nect, gethostname, getpeername, getsockname, getsockopt, ioctl, listen, read,
recv, recvfrom, recvmsg, send, sendmsg, sendto, sethostname, setsockopt,
shutdown, socket, and write.

16.4 Library Support

The bios provides all necessary support for the Cygnus “newlib” C library, either
directly or through device drivers.

16.5 Debugging

Most debugging code within the BIOS consists of assertions which are enabled on
development systems. Typically, if an assertion fails the chip is halted via the halt
instruction. At this point, the rx register should contain a pointer to an ASCII string
explaining the reason for the halt.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 62



17. Release List & Known Bugs

17.1 Samsung N2000 (Extiva-1)

The model-specific executable extension for the Samsung N2000 Extiva-1 is “exv”.

17.1.1 Bios version 1.00.31

CVS tag version1 00 31, built 13 June, 2000.
This version was used in approximately the first 1000 units manufactured.
The NetAccept function is defective. A patch is in the standard C library accept()

function, and in bios releases starting with version 1.00.32.
There is a bug in the miniBIOS DMA functions. These functions fail to wait for the

main bus DMA pending flag to go clear before beginning a transfer. As of this writing,
there is no BIOS patch available. The bug is fixed in version 1.00.34 and later.

There is a set of problems with memory devices on the Nuon Peripheral Bus.
These are fixed in version 1.00.33 and later. No patch/workaround is presently avail-
able.

1. Raw reads/writes were conditionalized out. Now they are exported uncondi-
tionally — and renamed to what would make sense.

2. An unformatted (or damaged) card was unaccessible, and could hang the sys-
tem. Made them available for raw access.

3. The BIOS relied on the card’s magic number, which effectively excluded an
unformatted card. Added a test to check for the presence of a card.

4. The card’s bus coordinates were not available to the application.

17.1.2 Bios version 1.00.34

CVS tag version1 00 34, built 21 June, 2000.
No bugs known.
This build has fixes for the NetAccept, miniBIOS and memory device problems

mentioned above, and also calls BiosReboot instead of BiosExit in several cir-
cumstances. It also handles some additional keys from the remote control.

17.1.3 Bios version 1.00.37

CVS tag version1 00 37, built 17 August, 2000.
No bugs known.
This includes some changes in the handling of remote buttons, and also a timing

change in the NUON port handling.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 63



17.1.4 Bios version 1.00.41

CVS tag version1 00 41, built 3 October, 2000.
No bugs known.
This is nearly unchanged from version 1.00.37. The differences involve some

new authentication keys that can be used optionally, controlled by configuration.

17.2 Toshiba SD2300

The model-specific executable extension for the Toshiba SD-2300 is “sd2300”.

17.2.1 Bios version 1.02.52

CVS tag NUON0052.
The miniBIOS contains a bug which can cause it to sometimes not notice missing

bytes from the CDI. This can cause MediaRead (and related functions, including
the C read function) to sometimes get bad data. A patch to the miniBIOS code was
introduced in the C startup code crt0.o as of SDK release 0.82.

The TimeElapsed system call will return improper values for both microseconds
and milliseconds elapsed if the usec parameter is not NULL (in other words, if mi-
crosecond accurate timing is requested). To work around this, always pass NULL for
the second parameter of TimeElapsed. A patch for this problem will be introduced
in SDK release 0.83, but this patch will cause all times (including microseconds) to
be accurate only to the nearest 5 milliseconds.

17.2.2 Bios version 1.02.57

CVS tag NUON0057ENG1.
This version was mistakenly released by Toshiba. It was never approved for

production by either VM Labs or Toshiba. There was apparently a labelling blun-
der in the factory. It went into SD-2300 serial numbers 0XCM200001–0XCM203370,
0XCM400313–0XCM404630, 0XDM100505–0XCM102000, 9CM402163–09CM402215,
and 09CM402185–09CM402208.

The last two ranges of serial numbers are probably wrong.
This version has a bug in the authentication code that can cause a crash when

attempting to load an application (and possibly a driver) from a NUON bus memory
device.

The miniBIOS bug described above also affects this version.
The TimeElapsed bug described above also affects this version.

17.2.3 Bios version 1.02.59

CVS tag NUON0059.
The miniBIOS contains a bug which can cause it to sometimes not notice missing

bytes from the CDI. This can cause MediaRead (and related functions, including

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 64



the C read function) to sometimes get bad data. A patch to the miniBIOS code was
introduced in the C startup code crt0.o as of SDK release 0.82.

The TimeElapsed system call functions incorrectly when called with a request
for microsecond accuracy (the second parameter is not NULL); this is the same bug
which affects Bios version 1.02.52.

17.2.4 Bios version 1.02.61

CVS tag NUON0061.
This contains a fixed miniBIOS which correctly flags errors when bytes go missing

from the CDI.
The TimeElapsed system call functions incorrectly when called with a request

for microsecond accuracy (the second parameter is not NULL); this is the same bug
which affects Bios version 1.02.52.

17.3 Samsung N501 (Extiva-2)

The model-specific executable extension for the Samsung N2000 Extiva-2 is “n501”.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 65



Index

Dma do, 15
Dma wait, 14, 15
InitPE, 61
NetAccept, 63
exit, 7
flushcache, 29
synccache, 28
syncmem, 29

accept, 62
AudioQueryChannelMode, 32
AudioQuerySampleRates, 31
AudioReset, 31
AudioSetChannelMode, 32
AudioSetDMABuffer, 32
AudioSetSampleRates, 31

bind, 62
BIOS version, 5
BiosExit, 2, 7, 9, 63
BiosGetInfo, 5
BiosInit, 7
BiosIRMask, 48
BiosPauseMsg, 8, 9
BiosPoll, 8, 9
BiosReboot, 8, 63

C code on another MPE, 23, 25
cache, 28
CacheConfig, 29, 30
close, 62
CLUT, 39
CommRecvInfo, 12, 16–18
CommRecvInfoQuery, 17, 18
CommSend, 13, 16
CommSendDirect, 13, 16
CommSendInfo, 13, 16, 17
CommSendRecv, 17
CommSendRecvInfo, 17, 18
communication bus, 16, 17
connect, 62
ControllerExtendedInfo, 47
ControllerInitialize, 47
ControllerPollRate, 41, 47
CTRLR ANALOG1, 44

CTRLR ANALOG2, 44
CTRLR BRAKE, 44
CTRLR DPAD, 41, 44
CTRLR EXTBUTTONS, 41, 44, 45
CTRLR EXTENDED, 45
CTRLR FISHINGREEL, 45
CTRLR MOUSE, 44, 45
CTRLR PADDLE, 44
CTRLR QUADJOY1, 44
CTRLR QUADSPINNER1, 45
CTRLR QUADSPINNER2, 45
CTRLR REMOTE, 45
CTRLR RUDDER, 44
CTRLR SHOULDER, 41, 44
CTRLR STDBUTTONS, 41, 44
CTRLR THROTTLE, 44
CTRLR THROTTLEBRAKE, 44
CTRLR THUMBWHEEL1, 45
CTRLR THUMBWHEEL2, 45
CTRLR TRACKBALL, 45
CTRLR TWIST, 45
CTRLR WHEEL, 44

DCacheFlush, 13, 23, 28–30
DCacheInvalidateRegion, 29, 54
DCacheSync, 13, 23, 28, 29
DCacheSyncRegion, 13, 23, 28, 29
DeviceDetect, 43, 48
DiskChange, 55, 56
DiskEject, 56
DiskGetTotalSlots, 55
DiskRetract, 56, 57
DMA, 14
DMA CLUSTER BIT, 36, 37
DMABiLinear, 13, 14, 23
DMALinear, 13, 14, 23
drivers

file, 61, 62
media, 61, 62
network, 61, 62

EINVAL, 5, 6
emergency broadcast, 8
ENAMETOOLONG, 5

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 66



exit, 7

file drivers, 61, 62
fstat, 62

gethostname, 62
getpeername, 62
getsockname, 62
getsockopt, 62
GetStartImage, 60
GetSystemSetting, 5, 6
GetSystemSettingLength, 5, 6

interrupt service routine, 10
IntGetVector, 12
IntSetVector, 4, 10–13, 18, 51
ioctl, 62
IR ANGLE, 46
IR AUDIO, 46
IR CLEAR, 46
IR DISPLAY, 46
IR EJECT, 46
IR ENTER, 46
IR FF, 46, 47
IR FR, 46
IR KEY 0, 46
IR KEY 9, 46
IR MENU, 46
IR RESUME, 46
IR SETUP, 46
IR SF, 46
IR SKIP NEXT, 46
IR SKIP PREV, 46
IR SR, 46
IR STOP, 46
IR SUBTITLE, 46
IR TOP, 46
IR VOLUME, 46, 47
IR ZOOM, 46, 47
isatty, 62
ISRs, 10

JOY A, 46
JOY B, 46
JOY C, 46
JOY D, 46
JOY DOWN, 46
JOY E, 46

JOY F, 46
JOY L, 46
JOY LEFT, 46
JOY R, 46
JOY RIGHT, 46
JOY START, 46
JOY UP, 46
JOY Z, 46

kAudioOutChannels, 6
kDisplayAspectCode, 6
kGameCookie, 6
kMemSDRAM, 58, 59
kMemSysRam, 58, 59
kParentalCountryCode, 6
kParentalLevel, 6
kPlayerLanguage, 6
kRegionCode, 6
kSupportedVideoMaterial, 6
kSupportedVideoSystem, 6
kTvSystem, 6
kVidOutputComposite, 40
kVidOutputDefault, 40
kVidOutputSvideo, 40

level 1 ISR, 10
level 2 ISR, 10
libnise, 31
link, 62
listen, 62
LoadDefaultSystemSettings, 7
LoadGame, 19
LoadSystemSettings, 7
lseek, 62
lstat, 62

main bus, 14
malloc, 58
media drivers, 61, 62
MediaClose, 7, 52
MediaGetDevicesAvailable, 52
MediaGetInfo, 53
MediaInfo, 53
MediaInitMPE, 24, 25, 55
MediaOpen, 7, 52, 53
MediaRead, 13, 30, 53, 54, 64
MediaShutdownMPE, 24, 25, 54, 55

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 67



MediaWrite, 54
MemAdd, 59
MemAlloc, 58, 59
MemFree, 59
MemInit, 59
MemLoadCoff, 19, 20
MemLocalScratch, 15, 58
MiniBIOS, 25
MINIcommhook, 26, 27
MINICommrecv, 26
MINIcommrecv, 26, 27
MINIcommrecvquery, 26, 27
MINIcommsend, 26, 27
MPE HAS CACHES, 23
MPEAlloc, 20, 21, 24, 55
MPEAllocSpecific, 21
MPEFree, 21
MPELoad, 22
MPEReadRegister, 21
MPERun, 20, 23
MPERunThread, 12, 23, 24
MPEsAvailable, 21
MPEStatus, 24
MPEStop, 22
MPEWait, 22
MPEWriteRegister, 22

network drivers, 61, 62
NTSC, 1, 37
NUON.DAT, 56
nvlNone, 6
nvlPlayerEnglishLanguage, 6
nvlPlayerFrenchLanguage, 6
nvlPlayerSpanishLanguage, 6

open, 3, 62
other bus, 14

PAL, 37
PatchJumptable, 9
pause, 9

read, 3, 30, 62, 64, 65
recv, 62
recvfrom, 62
recvmsg, 62

send, 62

sendmsg, 62
sendto, 62
sethostname, 62
setsockopt, 62
SetStartImage, 60
SetSystemSetting, 6
shutdown, 62
SLOT IS ABS, 55
SLOT IS DELTA, 55
socket, 62
spinwait, 54
StartImageValid, 60
stat, 62
StreamLoadCoff, 20

thread, 23
thread-safe BIOS functions, 23
TimeElapsed, 50, 51, 64, 65
TimeOfDay, 50
TimerInit, 51
TimeToSleep, 51

unlink, 62

version, BIOS, 5
VidChangeBase, 38, 39
VidChangeScroll, 38, 39
VidChannel, 34, 37
VidConfig, 33, 37–39
VidDisplay, 33, 37
VidQueryConfig, 33, 37
VidSetBorderColor, 33, 39
VidSetCLUTRange, 39
VidSetOutputType, 39
VidSetup, 38
VidSync, 38, 39
VM Labs revision number, 5

watchdog timer, 8
write, 30, 62

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 68


	Introduction
	NUON Boot Sequence
	All Systems
	DVD Based Systems
	Set Top Systems
	Hybrid Systems
	What environment does the booted program see?

	BIOS Compatibility Guidelines

	BIOS Configuration and Control
	_BiosGetInfo
	_GetSystemSetting
	_GetSystemSettingLength
	_SetSystemSetting
	_LoadSystemSettings
	_LoadDefaultSystemSettings
	_BiosInit
	_BiosExit
	_BiosReboot
	_BiosPoll
	_BiosPauseMsg
	_PatchJumptable

	Interrupt Service Routines
	_IntSetVector
	kIntrVideo
	kIntrSystimer0
	kIntrCommRecv

	_IntGetVector
	Re-entrant System Calls
	Calls which are both thread-safe and callable from another MPE
	Calls which are re-entrant but only callable from MPE 3


	DMA Functions
	_DMALinear
	_DMABiLinear
	Specialized DMA functions

	Comm Bus Functions
	_CommSend
	_CommSendInfo
	_CommSendDirect
	_CommRecvInfo
	_CommRecvInfoQuery
	_CommSendRecv
	_CommSendRecvInfo
	Other comm bus functions

	MPE Control and Execution Functions
	_LoadGame
	_MemLoadCoff
	_StreamLoadCoff
	_MPEAlloc
	_MPEAllocSpecific
	_MPEFree
	_MPEsAvailable
	_MPEReadRegister
	_MPEWriteRegister
	_MPEStop
	_MPEWait
	_MPELoad
	_MPERun
	_MPERunThread
	_MPEStatus

	The MiniBIOS
	MiniBIOS jump table
	MINIcommrecv
	MINIcommrecvquery
	MINIcommsend
	MINIcommhook


	Cache Control Functions
	_DCacheSync
	_DCacheSyncRegion
	_DCacheFlush
	_DCacheInvalidateRegion
	_CacheConfig

	Audio Functions
	_AudioReset
	_AudioQuerySampleRates
	_AudioSetSampleRates
	_AudioQueryChannelMode
	_AudioSetChannelMode
	_AudioSetDMABuffer

	Video Functions
	Video Data Structures
	VidDisplay
	VidChannel

	Video Format Restrictions
	Frame Buffer Widths
	Frame Buffer Heights

	_VidConfig
	_VidQueryConfig
	_VidSetup
	_VidChangeBase
	_VidChangeScroll
	_VidSync
	_VidSetBorderColor
	_VidSetCLUTRange
	_VidSetOutputType

	Controllers and Other Serial Devices
	Performance
	Data Structures
	Implementation
	_ControllerInitialize
	_ControllerExtendedInfo
	_ControllerPollRate
	_DeviceDetect
	_BiosIRMask

	Time Related Functions
	_TimeOfDay
	_TimeElapsed
	_TimerInit
	_TimeToSleep

	Media and Drive Functions
	_MediaOpen
	_MediaClose
	_MediaGetDevicesAvailable
	_MediaGetInfo
	_MediaRead
	_MediaWrite
	_spinwait
	_MediaShutdownMPE
	_MediaInitMPE
	_DiskGetTotalSlots
	_DiskChange
	_DiskEject
	_DiskRetract

	Memory Management
	Local MPE Memory
	_MemLocalScratch
	SDRAM and System RAM
	_MemAlloc
	_MemFree
	_MemAdd
	_MemInit

	Platform Control Functions
	_StartImageValid
	_SetStartImage
	_GetStartImage

	Inside the BIOS
	Memory Layout
	Bootup and Initialization
	Devices
	File Drivers
	Media Drivers
	Network Drivers

	Library Support
	Debugging

	Release List & Known Bugs
	Samsung N2000 (Extiva-1)
	Bios version 1.00.31
	Bios version 1.00.34
	Bios version 1.00.37
	Bios version 1.00.41

	Toshiba SD2300
	Bios version 1.02.52
	Bios version 1.02.57
	Bios version 1.02.59
	Bios version 1.02.61

	Samsung N501 (Extiva-2)


