A note from VM Labs, Inc.

Here is the Independent JPEG G oup's software, conpiled for
Merlin. The port was very straightforward, and involved only
changi ng the makefile, configuration files, and adding

an "in nmenory" source (see nendata.c). No Merlin specific
optim zation has been perfornmed yet, which neans that

the code runs rather slowy conpared to what could be
achieved if, for exanple, the IDCT were re-coded in

Merlin assenbly | anguage.

This library is provided as-is, as a "quick and dirty"
way to get JPEG i mages up. BE PREPARED TO MODI FY ANY OF
YOUR CODE WHI CH USES THI S LI BRARY when we rel ease a
Merlin specific (and much faster!) JPEG deconpresser.
Bel i eve me, JPEG can go much faster on Merlin.

----- begin |ibjpeg' s Readne.txt inclusion -----

The | ndependent JPEG G oup's JPEG software

READVE for rel ease 6a of 7-Feb-96

This distribution contains the sixth public release of the Independent JPEG
G oup's free JPEG software. You are welcone to redistribute this software and
to use it for any purpose, subject to the conditions under LEGAL | SSUES, bel ow.

Serious users of this software (particularly those incorporating it into

| arger prograns) should contact 1JG at jpeg-info@unet.uu.net to be added to
our electronic mailing list. Miling |ist nenbers are notified of updates
and have a chance to participate in technical discussions, etc.

This software is the work of Tom Lane, Philip d adstone, Luis Otiz, Jim
Boucher, Lee Crocker, Julian Mnguillon, CGeorge Phillips, Davide Rossi,
Ge' Weijers, and other menbers of the |Independent JPEG G oup.

1JGis not affiliated with the official | SO JPEG standards committee.

DOCUMENTATI ON ROADVAP

This file contains the follow ng sections:

OVERVI EW Ceneral description of JPEG and the 1JG software.
LEGAL | SSUES Copyright, lack of warranty, ternms of distribution.
REFERENCES VWere to | earn nore about JPEG

ARCHI VE LOCATI ONS VWhere to find newer versions of this software.
RELATED SOFTWARE O her stuff you should get.

FI LE FORVAT WARS Software *not* to get.

TO DO Pl ans for future 1JG rel eases.

O her docunentation files in the distribution are:

User docunentati on:

install.doc How to configure and install the IJG software.
usage. doc Usage instructions for cjpeg, djpeg, jpegtran
rdj pgcom and wjpgcom
*1 Uni x-styl e man pages for progranms (sanme info as usage. doc).
wi zar d. doc Advanced usage instructions for JPEG wi zards only.
change. | og Ver si on-to-versi on change hi ghlights.
Programer and internal docunentation:
i bj peg. doc How to use the JPEG |library in your own prograns.
exanpl e. c Sanpl e code for calling the JPEG Iibrary.
structure. doc Overview of the JPEG library's internal structure.
filelist.doc Road map of 1JG files.
coder ul es. doc Coding style rules --- please read if you contribute code.

Pl ease read at |least the files install.doc and usage.doc. Useful information
can al so be found in the JPEG FAQ (Frequently Asked Questions) article. See
ARCHI VE LOCATIONS below to find out where to obtain the FAQ article

If you want to understand how the JPEG code works, we suggest reading one or
nore of the REFERENCES, then | ooking at the docunentation files (in roughly
the order listed) before diving into the code.

Thi s package contains C software to inplenment JPEG i mage conpression and
deconpressi on. JPEG (pronounced "jay-peg") is a standardi zed conpression

met hod for full-color and gray-scale imges. JPEGis intended for conpressing
"real -worl d" scenes; |ine drawi ngs, cartoons and other non-realistic inmages
are not its strong suit. JPEGis |ossy, neaning that the output imge is not
exactly identical to the input imge. Hence you nust not use JPEGif you
have to have identical output bits. However, on typical photographic inmages,
very good conpression |levels can be obtained with no visible change, and
remar kably high conpression levels are possible if you can tolerate a
lowquality image. For nore details, see the references, or just experinment
wi th various conpression settings.

This software inplenents JPEG basel i ne, extended-sequential, and progressive
conpressi on processes. Provision is made for supporting all variants of these
processes, although some uncommon paraneter settings aren't inplenented yet.
For |l egal reasons, we are not distributing code for the arithmetic-coding
variants of JPEG see LEGAL | SSUES. W have made no provision for supporting
the hierarchical or |ossless processes defined in the standard.

We provide a set of library routines for reading and witing JPEG i mage fil es,
plus two sanple applications "cjpeg" and "dj peg", which use the library to
perform conversi on between JPEG and sone ot her popul ar image file formats.

The library is intended to be reused in other applications.

In order to support file conversion and view ng software, we have incl uded
consi derabl e functionality beyond the bare JPEG codi ng/ decodi ng capability;
for example, the color quantization nodules are not strictly part of JPEG
decodi ng, but they are essential for output to colormapped file formats or
col ormapped di splays. These extra functions can be conpiled out of the
library if not required for a particular application. W have al so included
"jpegtran”, a utility for |ossless transcoding between different JPEG

processes, and "rdjpgconi and "wrjpgcont, two sinple applications for
inserting and extracting textual comments in JFIF files.

The enphasis in designing this software has been on achi eving portability and
flexibility, while also nmaking it fast enough to be useful. In particular
the software is not intended to be read as a tutorial on JPEG (See the
REFERENCES section for introductory material.) Rather, it is intended to

be reliable, portable, industrial-strength code. W do not claimto have
achi eved that goal in every aspect of the software, but we strive for it.

W& wel cone the use of this software as a component of commercial products.
No royalty is required, but we do ask for an acknow edgenment in product
docunent ati on, as described under LEGAL | SSUES.

LEGAL | SSUES

In plain English:

1. W don't promise that this software works. (But if you find any bugs,
pl ease | et us know)
2. You can use this software for whatever you want. You don't have to pay us.
3. You may not pretend that you wote this software. |If you use it in a
program you nust acknowl edge somewhere in your docunentation that
you' ve used the 1JG code

In | egal ese:

The aut hors make NO WARRANTY or representation, either express or inplied,
with respect to this software, its quality, accuracy, nmerchantability, or
fitness for a particular purpose. This software is provided "AS |1S", and you,
its user, assune the entire risk as to its quality and accuracy.

This software is copyright (C) 1991-1996, Thonas G Lane.
Al Rights Reserved except as specified bel ow

Perm ssion is hereby granted to use, copy, nodify, and distribute this
software (or portions thereof) for any purpose, w thout fee, subject to these
condi tions:

(1) If any part of the source code for this software is distributed, then this
README file nmust be included, with this copyright and no-warranty notice

unal tered; and any additions, deletions, or changes to the original files
nmust be clearly indicated i n acconpanyi ng docunent ati on.

(2) If only executable code is distributed, then the acconpanyi ng
docunentati on nust state that "this software is based in part on the work of
t he I ndependent JPEG G oup”.

(3) Permission for use of this software is granted only if the user accepts
full responsibility for any undesirabl e consequences; the authors accept

NO LI ABILITY for damages of any kind.

These conditions apply to any software derived fromor based on the |JG code,
not just to the unnodified library. |If you use our work, you ought to
acknow edge us.

Perm ssion is NOT granted for the use of any 1JG author's nane or conpany nane
in advertising or publicity relating to this software or products derived from

it. This software may be referred to only as "the | ndependent JPEG G oup's
sof tware".

We specifically permt and encourage the use of this software as the basis of
commer ci al products, provided that all warranty or liability clains are
assuned by the product vendor.

ansi2knr.c is included in this distribution by perm ssion of L. Peter Deutsch
sole proprietor of its copyright holder, Al addin Enterprises of Menlo Park, CA
ansi 2knr.c is NOT covered by the above copyright and conditions, but instead
by the usual distribution terms of the Free Software Foundation; principally,
that you nust include source code if you redistribute it. (See the file

ansi 2knr.c for full details.) However, since ansi2knr.c is not needed as part
of any program generated fromthe 1JG code, this does not limt you nore than
t he foregoi ng paragraphs do.

The configuration script "configure"” was produced with GNU Autoconf. It
is copyright by the Free Software Foundation but is freely distributable.

It appears that the arithmetic coding option of the JPEG spec is covered by
patents owned by IBM AT&T, and Mtsubishi. Hence arithnetic coding cannot

| egal |y be used without obtaining one or nore licenses. For this reason
support for arithmetic coding has been renoved fromthe free JPEG software.
(Since arithnetic coding provides only a nmargi nal gain over the unpatented
Huf f man nmode, it is unlikely that very many inplenentations will support it.)
So far as we are aware, there are no patent restrictions on the remnaining
code.

WARNI NG Uni sys has begun to enforce their patent on LZW conpressi on agai nst
G F encoders and decoders. You will need a license from Unisys to use the
included rdgif.c or wgif.c files in a conmrercial or shareware application
At this time, Unisys is not enforcing their patent against freeware, so
distribution of this package remains legal. However, we intend to renove

G F support fromthe 1JG package as soon as a suitable replacenment format
becones reasonably popul ar

W are required to state that
"The Graphics Interchange Format(c) is the Copyright property of
CompuServe Incorporated. G F(sm is a Service Mark property of
ConmpuServe | ncorporated.”

REFERENCES

W highly recommend readi ng one or nore of these references before trying to
understand the innards of the JPEG software.

The best short technical introduction to the JPEG conpression algorithmis
Wl | ace, Gregory K. "The JPEG Still Picture Conpression Standard”
Conmuni cati ons of the ACM April 1991 (vol. 34 no. 4), pp. 30-44.

(Adj acent articles in that issue discuss MPEG notion picture conpression

applications of JPEG and related topics.) |If you don't have the CACM i ssue

handy, a PostScript file containing a revised version of Wallace's article
is available at ftp.uu.net, graphics/jpeg/wallace.ps.gz. The file (actually

a preprint for an article that appeared in | EEE Trans. Consumer El ectronics)

omts the sanple images that appeared in CACM but it includes corrections
and sonme added material. Note: the Wallace article is copyright ACM and
| EEE, and it may not be used for commercial purposes.

A somewhat | ess technical, nore leisurely introduction to JPEG can be found in
"The Data Conpressi on Book"” by Mark Nel son, published by M&T Books (Redwood
Cty, CA), 1991, ISBN 1-55851-216-0. This book provides good expl anati ons and
exanpl e C code for a multitude of conpression nethods including JPEG It is
an excellent source if you are confortable reading C code but don't know much
about data conpression in general. The book's JPEG sanple code is far from

i ndustrial -strength, but when you are ready to ook at a full inplenentation
you' ve got one here..

The best full description of JPEGis the textbook "JPEG Still |nage Data
Conpression Standard" by WIIliam B. Pennebaker and Joan L. Mtchell, published
by Van Nostrand Reinhold, 1993, |SBN 0-442-01272-1. Price US$59.95, 638 pp
The book includes the conplete text of the |1SO JPEG standards (DS 10918-1

and draft DI'S 10918-2). This is by far the nost conplete exposition of JPEG
in existence, and we highly recommend it.

The JPEG standard itself is not available electronically; you nust order a
paper copy through 1SO or ITU (Unless you feel a need to own a certified
of ficial copy, we recomend buying the Pennebaker and M tchell book instead;
it's much cheaper and includes a great deal of useful explanatory material.)
In the USA, copies of the standard may be ordered from ANSI Sales at (212)
642- 4900, or from G obal Engi neering Docunents at (800) 854-7179. (ANS
doesn't take credit card orders, but dobal does.) It's not cheap: as of
1992, ANSI was charging $95 for Part 1 and $47 for Part 2, plus 7%

shi ppi ng/ handl i ng. The standard is divided into two parts, Part 1 being the
actual specification, while Part 2 covers conpliance testing nethods. Part 1
is titled "Digital Conpression and Codi ng of Continuous-tone Still Images,
Part 1: Requirenents and guidelines" and has docunent nunbers ISOI1EC IS
10918-1, ITU-T T.81. Part 2 is titled "Digital Conpression and Codi ng of
Conti nuous-tone Still Images, Part 2: Conpliance testing"” and has docunent
numbers ISOIEC IS 10918-2, I TU-T T. 83.

Extensions to the original JPEG standard are defined in JPEG Part 3, a new I SO
docunent. Part 3 is undergoing |SO balloting and is expected to be approved
by the end of 1995; it will have document nunbers ISOIEC 1S 10918-3, ITU-T
T.84. 1JG currently does not support any Part 3 extensions.

The JPEG standard does not specify all details of an interchangeable file
format. For the omtted details we follow the "JFIF' conventions, revision
1.02. A copy of the JFIF spec is available from

Li terature Depart nment

C- Cube M crosystens, Inc.

1778 McCarthy Bl vd.

M| pitas, CA 95035

phone (408) 944-6300, fax (408) 944-6314
A Post Script version of this docunent is available at ftp.uu.net, file
graphics/jpeg/jfif.ps.gz. It can also be obtained by e-mail fromthe C Cube
mai |l server, netlib@3.pla.ca.us. Send the nessage "send jfif_ps fromjpeg"
to the server to obtain the JFIF docunent; send the nmessage "help" if you have
troubl e.

The TIFF 6.0 file format specification can be obtained by FTP from sgi.com
(192.48.153.1), file graphics/tiff/TIFF6.ps.Z, or you can order a printed

copy from Al dus Corp. at (206) 628-6593. The JPEG i ncorporation schene
found in the TIFF 6.0 spec of 3-June-92 has a nunber of serious problens.

| JG does not recommend use of the TIFF 6.0 design (TIFF Conpression tag 6).

I nstead, we reconmend the JPEG design proposed by TlIFF Technical Note #2
(Compression tag 7). Copies of this Note can be obtained from sgi.com or
fromftp.uu.net:/graphics/jpeg/. It is expected that the next revision of
the TIFF spec will replace the 6.0 JPEG design with the Note's design

Al t hough 1JG s own code does not support TIFF/ JPEG the free libtiff library
uses our library to inplenent TIFF JPEG per the Note. libtiff is available
fromsgi.com/graphics/tiff/.

ARCHI VE LOCATI ONS

The "official" archive site for this software is ftp.uu.net (Internet
address 192.48.96.9). The nost recent rel eased version can al ways be found
there in directory graphics/jpeg. This particular version will be archived
as graphics/jpeg/jpegsrc.vba.tar.gz. If you are on the Internet, you

can retrieve files fromftp.uu.net by standard anonynmous FTP. |f you don't
have FTP access, UUNET's archives are al so avail able via UUCP, contact

hel p@unet.uu.net for information on retrieving files that way.

Nunerous Internet sites maintain copies of the UUNET files. However, only
ftp.uu.net is guaranteed to have the latest official version

You can also obtain this software in DOS-conpatible "zip" archive format from
the SinTel archives (ftp.coast.net:/Sinfel/nmsdos/graphics/), or on ConpuServe
in the G aphics Support forum (GO Cl S: GRAPHSUP), library 12 "JPEG Tool s"
Agai n, these versions may sonetines |ag behind the ftp.uu.net rel ease.

The JPEG FAQ (Frequently Asked Questions) article is a useful source of
general information about JPEG It is updated constantly and therefore is
not included in this distribution. The FAQis posted every two weeks to
Usenet newsgroups conp. graphi cs. m sc, news.answers, and other groups.
You can always obtain the |atest version fromthe news.answers archive at
rtfmmt.edu. By FTP, fetch /pub/usenet/news. answers/jpeg-fag/partl and
.../part2. If you don't have FTP, send e-mail to mail-server@tfmmt.edu
wi th body

send usenet/ news. answers/jpeg-faq/partl

send usenet/ news. answers/j peg-faq/part2

RELATED SOFTWARE

Nuner ous viewi ng and i mage mani pul ati on prograns now support JPEG (Quite a
few of themuse this library to do so.) The JPEG FAQ descri bed above lists
sonme of the nmore popul ar free and shareware viewers, and tells where to
obtain themon Internet.

If you are on a Unix nmachine, we highly recomend Jef Poskanzer's free
PBVPLUS i mage software, which provides many useful operations on PPMf ormat
image files. In particular, it can convert PPMinmages to and froma w de
range of other formats. You can obtain this package by FTP fromftp.x.org
(contrib/pbmplus*.tar.Z) or ftp.ee.lbl.gov (pbnplus*.tar.Z). There is also
a newer update of this package called NETPBM avail able from

wuar chi ve. wust| . edu under directory /graphics/graphi cs/ packages/ Net PBM .
Unfortunately PBMPLUS/ NETPBM is not nearly as portable as the 1JG software
is; you are likely to have difficulty making it work on any non-Uni x machi ne.

A different free JPEG inplenmentation, witten by the PVRG group at Stanford,
is avail able from havefun.stanford.edu in directory pub/jpeg. This program
is designed for research and experinmentation rather than production use;

it is slower, harder to use, and | ess portable than the 1JG code, but it

is easier to read and nodify. Also, the PVRG code supports | ossless JPEG
whi ch we do not.

FI LE FORVAT WARS

Some JPEG prograns produce files that are not conpatible with our library.
The root of the problemis that the 1SO JPEG comrittee failed to specify a
concrete file format. Sonme vendors "filled in the blanks" on their own,
creating proprietary formats that no one el se could read. (For exanple, none
of the early commercial JPEG inplenmentations for the Maci ntosh were able to
exchange conpressed files.)

The file format we have adopted is called JFIF (see REFERENCES). This fornat
has been agreed to by a nunber of major commercial JPEG vendors, and it has
beconme the de facto standard. JFIF is a mnimal or "low end" representation
We recommend the use of TIFF/ JPEG (TIFF revision 6.0 as nodified by TIFF
Techni cal Note #2) for "high end" applications that need to record a | ot of
addi ti onal data about an image. TIFF/JPEGis fairly new and not yet w dely
supported, unfortunately.

The upcom ng JPEG Part 3 standard defines a file format called SPIFF

SPIFF is interoperable with JFIF, in the sense that nost JFIF decoders shoul d
be able to read the nost common variant of SPIFF. SPIFF has sone technica
advant ages over JFIF, but its major claimto fame is sinply that it is an
official standard rather than an informal one. At this point it is unclear
whet her SPIFF wi || supersede JFIF or whether JFIF will remain the de-facto
standard. [1JG intends to support SPIFF once the standard is frozen, but we
have not deci ded whether it should becone our default output format or not.
(I'n any case, our decoder will remain capable of reading JFIF indefinitely.)

Various proprietary file formats incorporating JPEG conpression al so exist.
We have little or no synpathy for the existence of these formats. | ndeed,
one of the original reasons for developing this free software was to help
force convergence on common, open format standards for JPEG files. Don't
use a proprietary file format!

In future versions, we are considering supporting sone of the upconm ng JPEG
Part 3 extensions --- principally, variable quantization and the SPIFF file
format.

Tuning the software for better behavior at |ow quality/high conpression
settings is also of interest. The current nethod for scaling the
guanti zation tables is known not to be very good at | ow Q val ues.

As al ways, speeding things up is high on our priority list.

Pl ease send bug reports, offers of help, etc. to jpeg-info@unet.uu.net.

----- end Readne.txt inclusion -----
----- begin |ibjpeg.txt inclusion -----

USI NG THE 1 JG JPEG LI BRARY

Copyright (C 1994-1996, Thomas G Lane.
This file is part of the Independent JPEG G oup's software.
For conditions of distribution and use, see the acconpanyi ng READVE file.

This file describes howto use the 1JG JPEG library within an application
program Read it if you want to wite a programthat uses the library.

The file exanple.c provides heavily comented skel eton code for calling the
JPEG library. Al so see jpeglib.h (the include file to be used by application
prograns) for full details about data structures and function paraneter lists.
The library source code, of course, is the ultimte reference.

Note that there have been *major* changes fromthe application interface
presented by 1JG version 4 and earlier versions. The old design had severa
inherent limtations, and it had accunmulated a | ot of cruft as we added
features while trying to mnimze application-interface changes. W have
sacrificed backward conpatibility in the version 5 rewite, but we think the
i nprovenents justify this.

TABLE OF CONTENTS

Overvi ew.
Functions provided by the library
Qutline of typical usage
Basic |ibrary usage:
Data formats
Conpression details
Deconpression details
Mechani cs of usage: include files, linking, etc
Advanced features:
Conpressi on paraneter selection
Deconpr essi on paraneter selection
Speci al col or spaces
Error handling
Conpressed data handling (source and destinati on managers)
I/ O suspensi on
Progressi ve JPEG support
Buf f er ed-i nage node
Abbr evi at ed datastreans and multipl e inmages
Speci al markers
Raw (downsanpl ed) i mage data
Real |y raw data: DCT coefficients
Progress nmonitoring

Menory managenent

Li brary conpile-tine options
Portability considerations
Notes for NMs-DOS inpl ementors

You should read at |east the overview and basic usage sections before trying
to programwi th the library. The sections on advanced features can be read
i f and when you need t hem

The 1JG JPEG library provides C code to read and wite JPEG conpressed i mage
files. The surrounding application programreceives or supplies inmage data a
scanline at a tine, using a straightforward unconpressed i nage format. Al
details of color conversion and ot her preprocessing/postprocessing can be
handl ed by the library.

The library includes a substantial anmount of code that is not covered by the
JPEG standard but is necessary for typical applications of JPEG These
functions preprocess the imge before JPEG conpression or postprocess it after
deconpression. They include col orspace conversion, downsanpling/upsanpling,
and col or quantization. The application indirectly selects use of this code
by specifying the format in which it wishes to supply or receive inmage data.
For exanple, if col ormapped output is requested, then the deconpression
library automatically invokes col or quantization

A wide range of quality vs. speed tradeoffs are possible in JPEG processing,
and even nore so in deconpression postprocessing. The deconpression library
provides multiple inplenentations that cover nost of the useful tradeoffs,
rangi ng fromvery-high-quality down to fast-preview operation. On the
conpressi on side we have generally not provided | ow quality choices, since
conpression is normally less time-critical. It should be understood that the
| owquality nodes may not neet the JPEG standard' s accuracy requirenents;
nonet hel ess, they are useful for viewers.

A word about functions *not* provided by the library. W handle a subset of
t he 1 SO JPEG standard; nost baseline, extended-sequential, and progressive
JPEG processes are supported. (Qur subset includes all features now in conmon
use.) Unsupported | SO options include:

Hi erarchi cal storage

Lossl ess JPEG

Arithnetic entropy coding (unsupported for |egal reasons)

DNL mar ker

Noni nt egral subsanpling ratios

We support both 8- and 12-bit data precision, but this is a conpile-tine
choice rather than a run-tine choice; hence it is difficult to use both
precisions in a single application

L T N

By itself, the library handles only interchange JPEG datastreans --- in
particular the widely used JFIF file format. The library can be used by
surroundi ng code to process interchange or abbrevi ated JPEG dat astreans t hat
are enbedded in nore conplex file formats. (For exanple, this library is

used by the free LIBTIFF library to support JPEG conpression in TIFF.)

Qutline of typical usage

The rough outline of a JPEG conpressi on operation is:

Al locate and initialize a JPEG conpressi on object
Specify the destination for the conpressed data (eg, a file)
Set paraneters for conpression, including innage size & col orspace
j peg_start_conmpress(...);
while (scan lines remain to be witten)
jpeg_wite_scanlines(...);
j peg_finish_conmpress(...);
Rel ease the JPEG conpressi on obj ect

A JPEG conpressi on object holds paraneters and working state for the JPEG
library. W make creation/destruction of the object separate fromstarting
or finishing conpression of an image; the same object can be re-used for a
series of inmage conpression operations. This makes it easy to re-use the
same paraneter settings for a sequence of images. Re-use of a JPEG object
al so has inportant inplications for processing abbreviated JPEG dat astreans,
as di scussed |l ater.

The image data to be conpressed is supplied to jpeg wite_scanlines() from
in-menory buffers. |If the application is doing file-to-file conpression
readi ng i mage data fromthe source file is the application's responsibility.
The library emts conpressed data by calling a "data destination manager™
which typically will wite the data into a file; but the application can
provide its own destination nanager to do sonething el se

Simlarly, the rough outline of a JPEG deconpression operation is:

Allocate and initialize a JPEG deconpressi on obj ect
Specify the source of the conpressed data (eg, a file)
Call jpeg_read_header() to obtain inmage info
Set paraneters for deconpression
j peg_start _deconpress(...);
while (scan lines remain to be read)
j peg_read_scanlines(...);
j peg_finish _deconmpress(...);
Rel ease the JPEG deconpressi on obj ect

This is conparable to the conpression outline except that reading the

dat astream header is a separate step. This is hel pful because information
about the image's size, colorspace, etc is avail able when the application

sel ects deconpression paraneters. For exanple, the application can choose an
output scaling ratio that will fit the image into the avail able screen size.

The deconpression library obtains conpressed data by calling a data source
manager, which typically will read the data froma file; but other behaviors
can be obtained with a custom source manager. Deconpressed data is delivered
into in-menory buffers passed to jpeg_read_scanlines().

It is possible to abort an inconplete conpression or deconpression operation
by calling jpeg_abort(); or, if you do not need to retain the JPEG object,

sinmply release it by calling jpeg_destroy().

JPEG conpressi on and deconpressi on objects are two separate struct types.
However, they share some common fields, and certain routines such as
j peg_destroy() can work on either type of object.

The JPEG library has no static variables: all state is in the conpression
or deconpression object. Therefore it is possible to process nmultiple
conpressi on and deconpressi on operations concurrently, using multiple JPEG
obj ect s.

Bot h conpression and deconpression can be done in an incremental nenory-to-
menory fashion, if suitable source/destination managers are used. See the
section on "1/O suspension" for nore details.

BASI C LI BRARY USACE

Before diving into procedural details, it is helpful to understand the
i mage data format that the JPEG |ibrary expects or returns.

The standard input image format is a rectangul ar array of pixels, with each
pi xel having the same nunber of "conponent"™ or "sanple" val ues (color
channel s). You nust specify how many conponents there are and the col orspace
interpretation of the conmponents. Mbst applications will use RGB data

(three components per pixel) or grayscal e data (one conponent per pixel).
PLEASE NOTE THAT RGB DATA | S THREE SAMPLES PER PI XEL, GRAYSCALE ONLY ONE

A remar kabl e nunmber of people manage to mss this, only to find that their
progranms don't work with grayscale JPEG fil es.

There is no provision for col ormapped input. JPEG files are always full-color
or full grayscale (or sonetinmes another col orspace such as CMWrK). You can
feed in a col ormapped i mage by expanding it to full-color format. However
JPEG often doesn't work very well with source data that has been col or mapped,
because of dithering noise. This is discussed in nore detail in the JPEG FAQ
and the other references nentioned in the README file.

Pi xel s are stored by scanlines, with each scanline running fromleft to
right. The conponent val ues for each pixel are adjacent in the row, for
example, RGB RGB RGB,... for 24-bit RG color. Each scanline is an
array of data type JSAMPLE --- which is typically "unsigned char", unless
you' ve changed jnorecfg.h. (You can also change the RGB pixel |ayout, say
to B,G R order, by nodifying jnmorecfg.h. But see the restrictions listed in
that file before doing so.)

A 2-D array of pixels is formed by making a list of pointers to the starts of
scanlines; so the scanlines need not be physically adjacent in nenory. Even
if you process just one scanline at a tinme, you nust nmake a one-el enent
pointer array to conformto this structure. Pointers to JSAVPLE rows are of
type JSAMPROW and the pointer to the pointer array is of type JSAVPARRAY

The library accepts or supplies one or nore conplete scanlines per call
It is not possible to process part of a rowat a tinme. Scanlines are always

processed top-to-bottom You can process an entire inmage in one call if you
have it all in nenory, but usually it's sinplest to process one scanline at
a tine.

For best results, source data val ues should have the precision specified by
BITS IN JSAMPLE (normally 8 bits). For instance, if you choose to conpress
data that's only 6 bits/channel, you should left-justify each value in a

byte before passing it to the conpressor. |If you need to conpress data
that has nore than 8 bits/channel, conpile with BITS IN JSAMPLE = 12.
(See "Library compile-time options", later.)

The data format returned by the deconpressor is the same in all details,
except that col ormapped output is supported. (Again, a JPEGfile is never
col ormapped. But you can ask the deconpressor to performon-the-fly color
qguanti zation to deliver col ormapped output.) If you request col or mapped
out put then the returned data array contains a single JSAVPLE per pi xel
its value is an index into a color map. The color map is represented as
a 2- D JSAMPARRAY in which each row holds the val ues of one col or conponent,
that is, colormap[i][j] is the value of the i'th col or conponent for pixe
value (map index) j. Note that since the colormap i ndexes are stored in
JSAMPLEs, the maxi mum nunber of colors is limted by the size of JSAMPLE
(ie, at nmobst 256 colors for an 8-bit JPEG library).

Conpression details

Here we revisit the JPEG conpression outline given in the overview
1. Allocate and initialize a JPEG conpressi on object.

A JPEG conpression object is a "struct jpeg _conpress_struct". (It also has
a bunch of subsidiary structures which are allocated via malloc(), but the
application doesn't control those directly.) This struct can be just a |oca
variable in the calling routine, if a single routine is going to execute the
whol e JPEG conpressi on sequence. Qherwise it can be static or allocated
frommalloc().

You will also need a structure representing a JPEG error handler. The part
of this that the library cares about is a "struct jpeg_error_ngr". |If you
are providing your own error handler, you'll typically want to enbed the
jpeg_error_nmgr struct in a larger structure; this is discussed |ater under
"Error handling". For now we'll assume you are just using the default error
handl er. The default error handler will print JPEG error/warni ng messages
on stderr, and it will call exit() if a fatal error occurs.

You must initialize the error handler structure, store a pointer to it into
the JPEG object's "err" field, and then call jpeg create_conpress() to
initialize the rest of the JPEG object.

Typical code for this step, if you are using the default error handler, is

struct jpeg_conpress_struct cinfo;
struct jpeg_error_ngr jerr;

éiﬁfo.err = jpeg_std error(&err);

j peg_create_conpress(&ci nfo);

j peg_create_conpress allocates a small anmount of nenory, so it could fai
if you are out of nenory. |In that case it will exit via the error handler
that's why the error handler nust be initialized first.

2. Specify the destination for the conpressed data (eg, a file).

As previously nmentioned, the JPEG |ibrary delivers conpressed data to a
"data destination"” nodule. The library includes one data destination
nmodul e whi ch knows how to wite to a stdio stream You can use your own
destination nodule if you want to do sonething el se, as discussed |ater

If you use the standard destination nodul e, you must open the target stdio
st ream beforehand. Typical code for this step |ooks |iKke:

FILE * outfile;

it ((outfile = fopen(filename, "wb")) == NULL) {
fprintf(stderr, "can't open %\n", fil ename);
exit(1);

j peg_stdi o_dest (&cinfo, outfile);
where the last line invokes the standard destinati on nodul e.

WARNING it is critical that the binary conpressed data be delivered to the
output file unchanged. On non-Unix systens the stdio library may perform
newl i ne translation or otherwi se corrupt binary data. To suppress this
behavi or, you may need to use a "b" option to fopen (as shown above), or use
setnode() or another routine to put the stdio streamin binary node. See

cj peg.c and djpeg.c for code that has been found to work on many systens.

You can select the data destination after setting other paraneters (step 3),
if that's nore convenient. You may not change the destination between
calling jpeg_start_conpress() and jpeg_finish_conpress().

3. Set paraneters for conpression, including inage size & col orspace.

You must supply information about the source i mage by setting the foll ow ng
fields in the JPEG object (cinfo structure):

i mage_w dth Wdth of image, in pixels

i mage_hei ght Hei ght of image, in pixels

i nput _conmponents Nunber of col or channels (sanples per pixel)
i n_col or _space Col or space of source inmage

The i mage di mensi ons are, hopefully, obvious. JPEG supports image di nensions
of 1 to 64K pixels in either direction. The input color space is typically
RGB or grayscal e, and input_conponents is 3 or 1 accordingly. (See "Special
col or spaces", later, for nore info.) The in_color_space field nust be
assigned one of the J_CO.OR _SPACE enum constants, typically JCS RGB or
JCS_GRAYSCALE

JPEG has a | arge nunber of conpression paraneters that determ ne how the

i mge is encoded. Most applications don't need or want to know about all
these paraneters. You can set all the paraneters to reasonable defaults by
calling jpeg_set _defaults(); then, if there are particul ar val ues you want
to change, you can do so after that. The "Conpression paraneter selection”
section tells about all the paraneters.

You must set in_color_space correctly before calling jpeg set_defaults(),
because the defaults depend on the source inmage col orspace. However the
other three source i mage paraneters need not be valid until you cal
jpeg_start_conpress(). There's no harmin calling jpeg _set_defaults() nore
than once, if that happens to be convenient.

Typi cal code for a 24-bit RGB source inmage is

cinfo.inmage_wi dth = Wdth; /* image width and height, in pixels */
ci nfo.image_hei ght = Hei ght;
ci nfo.input_conponents = 3; /* # of color conponents per pixel */

cinfo.in_col or_space = JCS_RGB; /* col orspace of input image */

j peg_set _defaul t s(&ci nfo);
/* Make optional paraneter settings here */

4. jpeg_start_conpress(...);

After you have established the data destination and set all the necessary
source image info and other paraneters, call jpeg_ start_conpress() to begin
a conpression cycle. This will initialize internal state, allocate working
storage, and enmit the first few bytes of the JPEG dat astream header

Typi cal code
j peg_start_conpress(&ci nfo, TRUE)

The "TRUE" paraneter ensures that a conplete JPEG i nterchange datastream
will be witten. This is appropriate in nost cases. |If you think you m ght
want to use an abbrevi ated datastream read the section on abbreviated

dat astreans, bel ow

Once you have called jpeg_start_conpress(), you may not alter any JPEG
paranmeters or other fields of the JPEG object until you have conpl et ed
t he conpression cycle.

5. while (scan lines remain to be witten)
jpeg_wite_scanlines(...);

Now wite all the required inage data by calling jpeg wite_scanlines()
one or nore tines. You can pass one or nore scanlines in each call, up

to the total inmage height. |In nost applications it is convenient to pass
just one or a few scanlines at a time. The expected format for the passed
data is discussed under "Data formats", above.

I mmge data should be witten in top-to-bottom scanline order. The JPEG spec
contai ns sonme weasel wording about how top and bottom are application-defined
terns (a curious interpretation of the English |anguage...) but if you want
your files to be conmpatible with everyone else's, you WLL use top-to-bottom

order. |If the source data nmust be read in bottomto-top order, you can use
the JPEG library's virtual array mechanismto invert the data efficiently.
Exampl es of this can be found in the sanple application cjpeg.

The library maintains a count of the nunber of scanlines witten so far
in the next_scanline field of the JPEG object. Usually you can just use
this variable as the | oop counter, so that the loop test |ooks like
"whil e (cinfo.next_scanline < cinfo.inmge_hei ght)".

Code for this step depends heavily on the way that you store the source data.
exanpl e.c shows the followi ng code for the case of a full-size 2-D source
array containing 3-byte R@ pixels:

JSAMPROW r ow_poi nter[1]; /* pointer to a single row */
int row stride; /* physical roww dth in buffer */

row stride = image_ wdth * 3; /* JSAMPLEs per row in image_buffer */

whi I e (cinfo.next_scanline < cinfo.imge_hei ght) {
row pointer[0] = & i mage_buffer[cinfo.next_scanline * row stride];
jpeg_wite_scanlines(&cinfo, row pointer, 1);

}

jpeg_wite_scanlines() returns the nunber of scanlines actually witten.
This will normally be equal to the nunber passed in, so you can usually
ignore the return value. It is different in just two cases:

* |f youtry to wite nore scanlines than the decl ared i nage hei ght,

t he additional scanlines are ignored.

* |f you use a suspending data destination manager, output buffer overrun
wi || cause the conpressor to return before accepting all the passed |ines.
This feature is discussed under "1/O suspension”, below. The normal
stdi o destination manager will NOT cause this to happen

In any case, the return value is the sane as the change in the val ue of
next scanl i ne.

6. jpeg_finish_conpress(...);

After all the imge data has been witten, call jpeg_finish_conpress() to
conpl ete the conpression cycle. This step is ESSENTIAL to ensure that the

| ast bufferload of data is witten to the data destination

j peg_finish_conpress() also rel eases working menory associated with the JPEG
obj ect.

Typi cal code
j peg_fini sh_conpress(&cinfo);

If using the stdio destination manager, don't forget to close the output
stdio streamif necessary.

If you have requested a nulti-pass operating node, such as Huffnman code

optim zation, jpeg_ finish_conpress() will performthe additional passes using

data buffered by the first pass. |In this case jpeg_finish_conpress() may take
quite a while to conplete. Wth the default conpression paranmeters, this wll
not happen.

It is an error to call jpeg_ finish_conpress() before witing the necessary
total nunber of scanlines. |If you wish to abort conpression, cal
j peg_abort () as discussed bel ow.

After conpleting a conpression cycle, you may di spose of the JPEG object

as discussed next, or you may use it to conpress another image. |In that case
return to step 2, 3, or 4 as appropriate. |If you do not change the
destinati on manager, the new datastreamw |l be witten to the same target.

If you do not change any JPEG paraneters, the new datastreamw || be witten
with the sane paraneters as before. Note that you can change the input inmage
di mensi ons freely between cycles, but if you change the input col orspace, you
shoul d call jpeg_set_defaults() to adjust for the new col orspace; and then
you'll need to repeat all of step 3.

7. Rel ease the JPEG conpression object.

VWhen you are done with a JPEG conpression object, destroy it by calling

j peg_destroy_conpress(). This will free all subsidiary menory. O you can
call jpeg_destroy() which works for either conpression or deconpression
objects --- this nmay be nore convenient if you are sharing code between
conpressi on and deconpressi on cases. (Actually, these routines are equival ent
except for the declared type of the passed pointer. To avoid gripes from
ANSI C compilers, jpeg _destroy() should be passed a j_comon_ptr.)

If you allocated the jpeg _conpress_struct structure frommalloc(), freeing
it is your responsibility --- jpeg_destroy() won't. Ditto for the error
handl er structure.

Typi cal code

j peg_dest roy_conpress(&ci nfo);

8. Aborting.

If you decide to abort a conpression cycle before finishing, you can clean up
in either of two ways:

* |f you don't need the JPEG object any nore, just cal
j peg_destroy_conpress() or jpeg_destroy() to release nmenory. This is
legitimate at any point after calling jpeg _create_conpress() --- in fact,
it's safe even if jpeg_create_conpress() fails.

* |f you want to re-use the JPEG object, call jpeg_abort_conpress(), or
j peg_abort () which works on both conpression and deconpressi on objects.
This will return the object to an idle state, releasing any working nenory.
jpeg_abort() is allowed at any tine after successful object creation

Note that cleaning up the data destination, if required, is your
responsibility.

Deconpression details

Here we revisit the JPEG deconpression outline given in the overview

1. Allocate and initialize a JPEG deconpression object.

This is just like initialization for conpression, as discussed above,
except that the object is a "struct jpeg_deconpress_struct” and you
call jpeg_create_deconpress(). FError handling is exactly the sane.

Typi cal code

struct jpeg_deconpress_struct cinfo;
struct jpeg_error_ngr jerr;

cinfo.err = jpeg_std error(&err);
j peg_creat e_deconpress(&ci nfo);

(Both here and in the 1JG code, we usually use variable name "cinfo" for
bot h conpressi on and deconpressi on objects.)

2. Specify the source of the conpressed data (eg, a file).

As previously nmentioned, the JPEG |ibrary reads conpressed data froma "data
source" nmodule. The library includes one data source nodul e whi ch knows how
to read froma stdio stream You can use your own source nodule if you want
to do sonething el se, as discussed |ater

If you use the standard source nodul e, you must open the source stdio stream
bef orehand. Typical code for this step | ooks like:

FILE * infile;

it ((infile = fopen(filename, "rb")) == NULL) {
fprintf(stderr, "can't open %\n", fil ename);
exit(1);

jpeg_stdio_src(&info, infile);
where the last line invokes the standard source nodul e.

WARNING it is critical that the binary conpressed data be read unchanged

On non-Uni x systens the stdio library may performnew ine translation or
otherwi se corrupt binary data. To suppress this behavior, you may need to use
a "b" option to fopen (as shown above), or use setnode() or another routine to
put the stdio streamin binary node. See cjpeg.c and djpeg.c for code that
has been found to work on many systens.

You may not change the data source between calling jpeg_read_header() and
jpeg_finish decompress(). |If you wish to read a series of JPEG inages from
a single source file, you should repeat the jpeg_read_header() to

j peg_finish_deconpress() sequence without reinitializing either the JPEG
object or the data source nodule; this prevents buffered i nput data from
bei ng di scar ded

3. Call jpeg_read_header() to obtain inage info.

Typi cal code for this step is just

j peg_read_header (&ci nfo, TRUE)

This will read the source datastream header markers, up to the beginning
of the conpressed data proper. On return, the image dinmensions and ot her
i nfo have been stored in the JPEG object. The application my w sh to
consult this informati on before sel ecting deconpressi on paraneters.

More conpl ex code is necessary if
* A suspending data source is used --- in that case jpeg_read_header ()
may return before it has read all the header data. See "I/ O suspension”
bel ow. The nornmal stdio source manager will NOT cause this to happen
* Abbreviated JPEG files are to be processed --- see the section on
abbrevi ated datastreans. Standard applications that deal only in
i nterchange JPEG fil es need not be concerned with this case either

It is permssible to stop at this point if you just wanted to find out the
i mage di mensi ons and ot her header info for a JPEG file. In that case,

call jpeg_destroy() when you are done with the JPEG object, or cal
jpeg_abort() to return it to an idle state before selecting a new data
source and readi ng anot her header

4. Set paraneters for deconpression

j peg_read_header () sets appropriate default deconpression paraneters based on
the properties of the image (in particular, its col orspace). However, you
may well want to alter these defaults before begi nning the deconpression

For exanple, the default is to produce full color output froma color file.

If you want col or mapped output you must ask for it. Oher options allow the
returned i nage to be scaled and all ow various speed/quality tradeoffs to be
sel ected. "Deconpression paraneter selection”, below gives details.

If the defaults are appropriate, nothing need be done at this step

Note that all default values are set by each call to jpeg_read_header().
If you reuse a deconpression object, you cannot expect your pararmeter
settings to be preserved across cycles, as you can for conpression

You nmust set desired paraneter val ues each tine.

5. jpeg_start_deconpress(...);

Once the paraneter values are satisfactory, call jpeg_start_deconpress() to
begi n deconpression. This will initialize internal state, allocate working
menory, and prepare for returning data.

Typi cal code is just
j peg_start_deconpress(&cinfo);

If you have requested a nulti-pass operating node, such as 2-pass col or

qguanti zation, jpeg_start_deconpress() will do everything needed before data
out put can begin. In this case jpeg_start_deconpress() nmay take quite a while
to conplete. Wth a single-scan (non progressive) JPEG file and default
deconpressi on paraneters, this will not happen; jpeg_start_deconpress() wll
return quickly.

After this call, the final output image dinensions, including any requested
scaling, are available in the JPEG object; so is the selected colormap, if
col ormapped out put has been requested. Useful fields include

out put _wi dt h i mage wi dth and height, as scal ed

out put _hei ght

out _col or _conponent s # of col or conponents in out_col or_space
out put _conponents # of col or components returned per pixe

col or map the selected colormap, if any

actual nunber of col ors nunber of entries in col ormap

out put _conponents is 1 (a colormap index) when quanti zing colors; otherw se it
equal s out _col or _conponents. It is the nunber of JSAMPLE values that will be
emtted per pixel in the output arrays.

Typically you will need to allocate data buffers to hold the incom ng inage.
You will need output_wi dth * output_conponents JSAMPLES per scanline in your
out put buffer, and a total of output_height scanlines will be returned.

Note: if you are using the JPEG library's internal nmenory manager to all ocate
data buffers (as djpeg does), then the manager's protocol requires that you
request large buffers *before* calling jpeg_start_deconpress(). This is a
little tricky since the output_ XXX fields are not normally valid then. You
can nake themvalid by calling jpeg_cal c_output_dinmensions() after setting the
rel evant paraneters (scaling, output color space, and quantization flag).

6. while (scan lines remain to be read)
j peg_read_scanlines(...);

Now you can read the deconpressed i mage data by calling jpeg_read_scanlines()
one or nore tinmes. At each call, you pass in the maxi num nunber of scanlines
to be read (ie, the height of your working buffer); jpeg_read_scanlines()
wWill return up to that many lines. The return value is the nunber of |ines
actually read. The format of the returned data is di scussed under "Data
formats”, above. Don't forget that grayscale and color JPEGs will return
different data fornats!

I mage data is returned in top-to-bottomscanline order. If you nmust wite
out the image in bottomto-top order, you can use the JPEG library's virtua
array mechanismto invert the data efficiently. Exanples of this can be
found in the sanple application djpeg.

The library maintains a count of the number of scanlines returned so far

in the output_scanline field of the JPEG object. Usually you can just use
this variable as the |l oop counter, so that the loop test |ooks like

"whil e (cinfo.output_scanline < cinfo.output_height)". (Note that the test
shoul d NOT be agai nst inmage_hei ght, unless you never use scaling. The

i mage_height field is the height of the original unscal ed i mage.)

The return val ue always equal s the change in the val ue of output_scanline.

If you don't use a suspending data source, it is safe to assune that
j peg_read_scanlines() reads at |east one scanline per call, until the
bottom of the i nage has been reached.

If you use a buffer larger than one scanline, it is NOI safe to assune that

jpeg_read_scanlines() fills it. (The current inplenentation won't return
nore than cinfo.rec_outbuf_height scanlines per call, no matter how | arge
a buffer you pass.) So you nust always provide a loop that calls

j peg_read_scanlines() repeatedly until the whole i mage has been read.

7. jpeg_finish_deconpress(...);

After all the imge data has been read, call jpeg_finish _deconpress() to
conpl ete the deconpression cycle. This causes working nmenory associ at ed
with the JPEG object to be rel eased.

Typi cal code
j peg_fini sh_deconpress(&ci nfo);

If using the stdio source nanager, don't forget to close the source stdio
streamif necessary.

It is an error to call jpeg_finish_deconpress() before reading the correct
total nunber of scanlines. |If you wish to abort conpression, cal
j peg_abort () as discussed bel ow.

After conpleting a deconpression cycle, you may di spose of the JPEG object as
di scussed next, or you may use it to deconpress another image. In that case
return to step 2 or 3 as appropriate. If you do not change the source
manager, the next image will be read fromthe same source.

8. Rel ease the JPEG deconpression object.

VWhen you are done with a JPEG deconpressi on object, destroy it by calling
j peg_destroy_deconpress() or jpeg_destroy(). The previous discussion of
destroyi ng conpression objects applies here too.

Typi cal code

j peg_dest roy_deconpr ess(&ci nfo);

9. Aborting.

You can abort a deconpression cycle by calling jpeg_destroy_deconpress() or
j peg_destroy() if you don't need the JPEG object any nore, or

j peg_abort _deconpress() or jpeg_abort() if you want to reuse the object.
The previ ous discussion of aborting conpression cycles applies here too.

Mechani cs of usage: include files, linking, etc

Applications using the JPEG library should include the header file jpeglib.h
to obtain declarations of data types and routines. Before including
jpeglib.h, include system headers that define at |east the typedefs FILE and
size_t. On ANSI-conform ng systens, including <stdio.h> is sufficient; on
ol der Uni x systens, you may need <sys/types.h> to define size_t.

If the application needs to refer to individual JPEG I|ibrary error codes, also
include jerror.h to define those synbol s.

jpeglib.h indirectly includes the files jconfig.h and jnmorecfg.h. If you are
installing the JPEG header files in a systemdirectory, you will want to
install all four files: jpeglib.h, jerror.h, jconfig.h, jnorecfg.h.

The nmpbst convenient way to include the JPEG code into your executabl e program
is to prepare a library file ("libjpeg.a", or a correspondi ng nane on non-Uni x
machi nes) and reference it at your link step. |If you use only half of the
library (only conpression or only deconpression), only that nmuch code will be
i ncluded fromthe library, unless your linker is hopel essly brain-damaged.

The supplied makefiles build |ibjpeg.a automatically (see install.doc).

On some systens your application may need to set up a signal handler to ensure
that tenmporary files are deleted if the programis interrupted. This is nost
critical if you are on M5-DOS and use the jnendos.c nmenory nanager back end;

it wll try to grab extended nmenory for tenp files, and that space will NOT be
freed automatically. See cjpeg.c or djpeg.c for an exanple signal handl er

It may be worth pointing out that the core JPEG |ibrary does not actually
require the stdio library: only the default source/destinati on managers and
error handler need it. You can use the library in a stdio-less environnment
if you replace those nodul es and use jnmemobs.c (or anot her nenory manager of
your own devising). Mre info about the mnimumsystemlibrary requirenents
may be found in jinclude. h.

ADVANCED FEATURES

This section describes all the optional paraneters you can set for JPEG
conpression, as well as the "hel per” routines provided to assist in this
task. Proper setting of sone paraneters requires detail ed understanding
of the JPEG standard; if you don't know what a paraneter is for, it's best
not to ness with it! See REFERENCES in the README file for pointers to
nore i nfo about JPEG

It's a good idea to call jpeg_set _defaults() first, even if you plan to set

all the paraneters; that way your code is nore likely to work with future JPEG
libraries that have additional paraneters. For the sane reason, we recomend
you use a hel per routine where one is provided, in preference to tw ddling
cinfo fields directly.

The hel per routines are:

j peg_set _defaults (j_conpress_ptr cinfo)
This routine sets all JPEG paraneters to reasonabl e defaults, using
only the input image's color space (field in_col or_space, which nust
already be set in cinfo). Mny applications will only need to use
this routine and perhaps jpeg_set_quality().

j peg_set _col orspace (j_conpress_ptr cinfo, J_CO.OR _SPACE col orspace)
Sets the JPEG file's col orspace (field jpeg_col or_space) as specified,

and sets other col or-space-dependent paraneters appropriately. See
"Speci al col or spaces", below, before using this. A |arge nunber of
paraneters, including all per-conmponent paraneters, are set by this
routine; if you want to twi ddl e individual paraneters you should cal
j peg_set _col orspace() before rather than after

j peg_default_col orspace (j_conpress_ptr cinfo)
Sel ects an appropri ate JPEG col orspace based on ci nfo->i n_col or_space,
and calls jpeg_set_colorspace(). This is actually a subroutine of
j peg_set _defaults(). |It's broken out in case you want to change
just the col orspace-dependent JPEG paraneters.

jpeg_set _quality (j_conpress_ptr cinfo, int quality, boolean force_baseline)
Constructs JPEG quanti zation tables appropriate for the indicated
quality setting. The quality value is expressed on the 0..100 scale
recommended by 1JG (cjpeg's "-quality" switch uses this routine).
Note that the exact mapping fromquality values to tables may change
in future 1JG releases as nore is | earned about DCT quantization
If the force_baseline paraneter is TRUE, then the quantization table
entries are constrained to the range 1..255 for full JPEG baseline
conmpatibility. In the current inplenmentation, this only makes a
difference for quality settings below 25, and it effectively prevents
very small/low quality files from being generated. The |1JG decoder
i s capabl e of reading the non-baseline files generated at |ow quality
settings when force_baseline is FALSE, but other decoders nmay not be.

jpeg_set _linear_quality (j_conmpress_ptr cinfo, int scale_factor
bool ean force_basel i ne)

Sanme as jpeg_set _quality() except that the generated tables are the
sanmpl e tables given in the JPEC spec section K 1, nultiplied by the
specified scale factor (which is expressed as a percentage; thus

scal e_factor = 100 reproduces the spec's tables). Note that |arger
scale factors give lower quality. This entry point is useful for
conform ng to the Adobe PostScript DCT conventions, but we do not
recommend |inear scaling as a user-visible quality scal e otherw se.
force_baseline again constrains the computed table entries to 1..255.

int jpeg_quality_scaling (int quality)
Converts a value on the 1JGrecomended quality scale to a |inear
scal ing percentage. Note that this routine nmay change or go away
in future releases --- 1JG may choose to adopt a scaling nethod that
can't be expressed as a sinple scalar nmultiplier, in which case the
prem se of this routine collapses. Caveat user

j peg_add_quant _table (j_conmpress_ptr cinfo, int which_tbl,

const unsigned int *basic_table,

int scale_factor, bool ean force_baseline)
Allows an arbitrary quantization table to be created. which_tbl
i ndi cates which table slot to fill. basic_table points to an array
of 64 unsigned ints given in normal array order. These values are
multiplied by scale_factor/100 and then cl anped to the range 1..65535
(or to 1..255 if force_baseline is TRUE)
CAUTION: prior to library version 6a, jpeg_add_quant _tabl e expected
the basic table to be given in JPEG zigzag order. |If you need to
wite code that works with either older or newer versions of this
routi ne, you must check the library version nunber. Sonething |like
"#if JPEG LI B VERSION >= 61" is the right test.

j peg_sinpl e_progression (j_conpress_ptr cinfo)

Cenerates a default scan script for witing a progressive-JPEG file.
This is the recommended net hod of creating a progressive file,

unl ess you want to make a custom scan sequence. You must ensure that
the JPEG col or space is set correctly before calling this routine.

Conpression paraneters (cinfo fields) include:

J DCT_METHOD dct et hod

Selects the algorithmused for the DCT step. Choices are:

JDCT_| SLOW sl ow but accurate integer algorithm

JDCT_| FAST: faster, |ess accurate integer method

JDCT_FLQAT: fl oating-poi nt nethod

JDCT_DEFAULT: default nethod (normally JDCT_I SLON

JDCT_FASTEST: fastest nethod (normally JDCT_| FAST)
The FLOAT nethod is very slightly nore accurate than the | SLON net hod,
but may give different results on different machi nes due to varying
roundoff behavior. The integer methods should give the same results
on all machines. On machines with sufficiently fast FP hardware, the
floating-point nmethod may al so be the fastest. The IFAST nethod is
consi derably | ess accurate than the other two; its use is not
recomended if high quality is a concern. JDCT_DEFAULT and
JDCT_FASTEST are macros configurable by each installation

J_COLOR _SPACE | peg_col or _space

i nt

num_conponent s

The JPEG col or space and correspondi ng nunber of components; see
"Speci al col or spaces”, below, for nore info. W reconmend using
j peg_set _col or_space() if you want to change these.

bool ean opti m ze_codi ng

TRUE causes the conpressor to conpute optimal Huffnman coding tables
for the image. This requires an extra pass over the data and
therefore costs a good deal of space and tinme. The default is
FALSE, which tells the conpressor to use the supplied or default

Huf f man tables. In nost cases optinmal tables save only a few percent
of file size conpared to the default tables. Note that when this is
TRUE, you need not supply Huffman tables at all, and any you do

supply will be overwitten.

unsigned int restart_interval

i nt

restart_in_rows

To emt restart markers in the JPEG file, set one of these nonzero.
Set restart_interval to specify the exact interval in MU bl ocks.
Set restart_in_rows to specify the interval in MCU rows. (If
restart _in rows is not O, then restart _interval is set after the
imge width in MCUs is conputed.) Defaults are zero (no restarts).

const jpeg_scan_info * scan_info

i nt

num_scans

By default, scan_info is NULL; this causes the conpressor to wite a
si ngl e-scan sequential JPEG file. If not NULL, scan_info points to
an array of scan definition records of |ength numscans. The
conpressor will then wite a JPEG fil e having one scan for each scan
definition record. This is used to generate noninterl eaved or

progressive JPEG files. The library checks that the scan array
defines a valid JPEG scan sequence. (] peg_sinple_progression creates
a suitable scan definition array for progressive JPEG) This is

di scussed further under "Progressive JPEG support™.

i nt snoot hi ng_fact or
If non-zero, the input inmage is snoothed; the value should be 1 for
m ni mal smoothing to 100 for maxi num snmoot hi ng. Consult jcsanple.c
for details of the smoothing algorithm The default is zero.

bool ean wite JFIF_header
If TRUE, a JFIF APPO marker is emtted. |jpeg_set_defaults() and
j peg_set _col orspace() set this TRUE if a JFIF-1egal JPEG col or space
(ie, YCbCr or grayscale) is selected, otherw se FALSE

U NT8 density_unit

U NT16 X density

U NT16 Y _density
The resolution information to be witten into the JFIF marker
not used otherw se. density unit may be O for unknown,
1 for dots/inch, or 2 for dots/cm The default values are 0,1,1
i ndi cati ng square pixels of unknown size.

bool ean write_ Adobe marker
If TRUE, an Adobe APP14 marker is emtted. |jpeg_set_defaults() and
j peg_set _col orspace() set this TRUE if JPEG col or space RG, CWK
or YCCK is selected, otherwise FALSE. It is generally a bad idea
to set both wite JFIF _header and wite Adobe marker. In fact,
you probably shouldn't change the default settings at all --- the
default behavi or ensures that the JPEG file's col or space can be
recogni zed by the decoder

JQUANT_TBL * quant _tbl _ptrs[NUM_QUANT_TBLS]
Pointers to coefficient quantization tables, one per table slot,
or NULL if no table is defined for a slot. Usually these should
be set via one of the above hel per routines; jpeg_add_quant_tabl e()
i s general enough to define any quantization table. The other
routines will set up table slot O for lum nance quality and table
slot 1 for chrom nance.

JHUFF_TBL * dc_huff_tbl _ptrs[NUM HUFF_TBLS]

JHUFF_TBL * ac_huff_tbl _ptrs[NUM HUFF_TBLS]
Pointers to Huf fman codi ng tables, one per table slot, or NULL if
no table is defined for a slot. Slots O and 1 are filled with the
JPEG sampl e tables by jpeg_set _defaults(). |If you need to allocate
nore table structures, jpeg_alloc_huff_table() may be used.
Note that optinmal Huffrman tables can be conmputed for an i mage
by setting optim ze_coding, as discussed above; there's sel dom
any need to ness with providing your own Huf fman tabl es.

There are sone additional cinfo fields which are not docunented here
because you currently can't change them for exanple, you can't set
arith_code TRUE because arithnetic coding i s unsupported.

Per - conponent paraneters are stored in the struct cinfo.conmp_info[i] for
conponent nunber i. Note that conponents here refer to conponents of the

JPEG col or space, *not* the source inmage color space. A suitably large
conp_info[] array is allocated by jpeg_set_defaults(); if you choose not
to use that routine, it's up to you to allocate the array.

i nt conponent _id
The one-byte identifier code to be recorded in the JPEG file for
this component. For the standard col or spaces, we recomend you
| eave the default val ues al one.

int h_sanp_factor

int v_sanp_factor
Hori zontal and vertical sanpling factors for the conponent; mnust
be 1..4 according to the JPEG standard. Note that |arger sanpling
factors indicate a higher-resolution conponent; nany people find
this behavior quite unintuitive. The default values are 2,2 for
| um nance conponents and 1,1 for chrom nance conponents, except
for grayscale where 1,1 is used

i nt quant _tbl _no
Quanti zation table nunber for conponent. The default value is
0 for lum nance conmponents and 1 for chrom nance conponents.

int dc_tbl _no

int ac_tbl _no
DC and AC entropy coding table nunbers. The default val ues are
0 for lum nance conmponents and 1 for chrom nance conponents.

i nt conponent _i ndex
Must equal the conmponent's index in conp_info[]. (Beginning in
rel ease v6, the conpressor library will fill this in automatically;
you don't have to.)

Deconpr essi on paraneter selection

Deconpr essi on paraneter selection is sonewhat sinpler than conpression

par aneter selection, since all of the JPEG internal paraneters are
recorded in the source file and need not be supplied by the application
(Unl ess you are working with abbreviated files, in which case see
"Abbrevi at ed dat astreans”, below.) Deconpression paraneters control

t he postprocessing done on the inage to deliver it in a format suitable
for the application's use. Many of the paraneters control speed/quality
tradeoffs, in which faster deconpression may be obtained at the price of

a poorer-quality image. The defaults select the highest quality (slowest)
processi ng.

The following fields in the JPEG object are set by jpeg_read_header() and
may be useful to the application in choosing deconpression paraneters:

JDI MENSI ON i mage_wi dt h W dt h and hei ght of inmage

JDI MENSI ON i mage_hei ght

i nt num_conponent s Nunber of col or conponents

J_COLOR _SPACE | peg_col or _space Col orspace of inmage

bool ean saw JFI F_mar ker TRUE if a JFIF APPO nmarker was seen
U NT8 density_unit Resol ution data from JFI F narker

U NT16 X density

U NT16 Y _density
bool ean saw _Adobe_ mar ker TRUE i f an Adobe APP14 marker was seen
Ul NT8 Adobe transform Col or transform code from Adobe narker

The JPEG col or space, unfortunately, is something of a guess since the JPEG
standard proper does not provide a way to record it. In practice nost files
adhere to the JFIF or Adobe conventions, and the decoder w |l recognize these
correctly. See "Special color spaces", below, for nore info.

The deconpression paraneters that determ ne the basic properties of the
returned i nage are:

J_COLOR _SPACE out _col or _space
Qut put col or space. |jpeg_read_header() sets an appropriate default
based on jpeg_col or_space; typically it will be RG or grayscale
The application can change this field to request output in a different
col orspace. For exanple, set it to JCS_GRAYSCALE to get grayscale
output froma color file. (This is useful for preview ng: grayscale
output is faster than full color since the col or conponents need not
be processed.) Note that not all possible color space transforns are
currently inplenmented; you may need to extend jdcolor.c if you want an
unusual conversion

unsi gned int scal e_num scal e_denom
Scale the imge by the fraction scal e_num scal e_denom Default is
1/1, or no scaling. Currently, the only supported scaling ratios
are 1/1, 1/2, 1/4, and 1/8. (The library design allows for arbitrary
scaling ratios but this is not likely to be inplenmented any time soon.)
Smal | er scaling ratios permt significantly faster decoding since
fewer pixels need be processed and a sinpler |IDCT nethod can be used.

bool ean quanti ze_col ors
If set TRUE, col ormapped output will be delivered. Default is FALSE
meani ng that full-color output will be delivered.

The next three paraneters are relevant only if quantize_colors is TRUE

i nt desired _number of colors
Maxi mum nunber of colors to use in generating a library-supplied col or
map (the actual nunber of colors is returned in a different field).
Default 256. |Ignored when the application supplies its own color map

bool ean two_pass_quanti ze
If TRUE, an extra pass over the inmage is made to sel ect a custom col or
map for the image. This usually looks a |lot better than the one-size-
fits-all colormap that is used otherwise. Default is TRUE. |Ignored
when the application supplies its own col or map

J DI THER _MODE dit her node
Selects color dithering method. Supported val ues are:
JDI THER _NONE no dithering: fast, very low quality
JDI THER ORDERED ordered dither: noderate speed and quality
JDI THER FS Fl oyd- Steinberg dither: slow, high quality
Default is JDITHER FS. (At present, ordered dither is inplenmented
only in the single-pass, standard-colormap case. |If you ask for
ordered dither when two_pass_quantize is TRUE or when you supply

an external color map, you'll get F-S dithering.)

VWhen quantize_colors is TRUE, the target color map is described by the next
two fields. <colormap is set to NULL by jpeg_read _header(). The application
can supply a color map by setting col ormap non-NULL and setting

act ual _nunber_of _colors to the map size. Oherw se, jpeg_start_deconpress()
selects a suitable color map and sets these two fields itself.

[I npl ementation restriction: at present, an externally supplied colormap is
only accepted for 3-conponent output col or spaces.]

JSAMPARRAY col or map
The col or map, represented as a 2-D pixel array of out_col or_conponents
rows and actual _nunber_of _colors colums. lIgnored if not quantizing.
CAUTION: if the JPEG library creates its own col ormap, the storage
pointed to by this field is rel eased by jpeg_finish_deconpress().
Copy the col ormap sonewhere else first, if you want to save it

i nt actual nunber _of colors
The nunber of colors in the color map

Addi ti onal deconpression paraneters that the application may set include:

J DCT_METHOD dct et hod
Selects the algorithmused for the DCT step. Choices are the sane
as descri bed above for conpression

bool ean do_fancy_upsanpling
If TRUE, do careful upsanpling of chroma components. |f FALSE
a faster but sloppier nethod is used. Default is TRUE. The visua
i npact of the sloppier nethod is often very small

bool ean do_bl ock_snoot hi ng
If TRUE, interblock snoothing is applied in early stages of decodi ng
progressive JPEG files; if FALSE, not. Default is TRUE. Early
progression stages | ook "fuzzy" wth snoothing, "blocky" wthout.
In any case, bl ock snmoothing ceases to be applied after the first few
AC coefficients are known to full accuracy, so it is relevant only
when usi ng buffered-i nage node for progressive inmages.

bool ean enabl e_1pass_quant

bool ean enabl e_ext er nal _quant

bool ean enabl e_2pass_quant
These are significant only in buffered-i nage node, which is
described in its own section bel ow.

The out put image di nensions are given by the following fields. These are
computed fromthe source i mage di nensions and the deconpressi on paraneters
by jpeg_start_deconpress(). You can also call jpeg_cal c_output_dinmensions()
to obtain the values that will result fromthe current paraneter settings.
This can be useful if you are trying to pick a scaling ratio that will get
close to a desired target size. It's also inportant if you are using the
JPEG library's menory manager to allocate output buffer space, because you
are supposed to request such buffers *before* jpeg _start_deconpress().

JDI MENSI ON out put _wi dth Act ual di mensi ons of output inage.
JDI MENSI ON out put _hei ght

i nt out_col or_components Nunber of col or conponents in out_col or _space
i nt out put_conponents Nunber of col or conponents returned.
i nt rec_out buf _hei ght Recommended hei ght of scanline buffer

VWhen quantizing col ors, output_conponents is 1, indicating a single color map
i ndex per pixel. Qherwise it equals out_col or_conmponents. The output arrays
are required to be output_w dth * out put_conponents JSAMPLES wi de.

rec_out buf _height is the recommended m ni num hei ght (in scanlines) of the

buf fer passed to jpeg_read_scanlines(). |If the buffer is smaller, the
library will still work, but tine will be wasted due to unnecessary data
copying. 1In high-quality nodes, rec_outbuf_height is always 1, but sonme

faster, lower-quality nodes set it to larger values (typically 2 to 4).
If you are going to ask for a high-speed processi ng node, you may as well
go to the trouble of honoring rec_outbuf_height so as to avoid data copying.

Speci al col or spaces

The JPEG standard itself is "color blind" and doesn't specify any particul ar
color space. It is customary to convert color data to a | um nance/chrom nance
col or space before conpressing, since this pernmits greater conpression. The
exi sting de-facto JPEG file format standards specify YCbCr or grayscal e data
(JFIF), or grayscale, RGE, YCbCr, CWrK, or YCCK (Adobe). For speci al
applications such as multispectral images, other color spaces can be used,

but it nust be understood that such files will be unportable.

The JPEG i brary can handl e the nbst common col orspace conversions (namely
RGB <=> YCbCr and CMYK <=> YCCK). It can also deal with data of an unknown
col or space, passing it through without conversion. |If you deal extensively
wi th an unusual col or space, you can easily extend the library to understand
addi ti onal col or spaces and perform appropriate conversions.

For conpression, the source data's col or space is specified by field
in_color_space. This is transforned to the JPEGfile's color space given
by j peg_col or_space. |jpeg_set_defaults() chooses a reasonabl e JPEG col or
space dependi ng on in_col or_space, but you can override this by calling
j peg_set _col orspace(). O course you nust select a supported transfornmation
jccolor.c currently supports the follow ng transformations:

R&B => YChCr

RGB => GRAYSCALE

YChCr => GRAYSCALE

CWK => YCCK
plus the null transforms: GRAYSCALE => GRAYSCALE, RGB => RGB
YChCr => YCbCr, COWYK => CWK, YCCK => YCCK, and UNKNOM => UNKNOMN.

The de-facto file format standards (JFIF and Adobe) specify APPn markers that
i ndi cate the col or space of the JPEG file. It is inportant to ensure that
these are witten correctly, or omtted if the JPEGfile's color space is not
one of the ones supported by the de-facto standards. |peg_set_col orspace()
will set the conpression paraneters to include or omt the APPn markers
properly, so long as it is told the truth about the JPEG col or space.

For exanple, if you are witing sone random 3-conponent col or space w t hout
conversion, don't try to fake out the library by setting in_col or_space and

j peg_col or _space to JCS_YCbCr; use JCS UNKNOMWN. You may want to wite an
APPn mar ker of your own devising to identify the col orspace --- see "Speci al

mar ker s", bel ow.

VWen told that the color space is UNKNOMN, the library will default to using
| um nance-qual ity conpression paraneters for all color conponents. You may
wel | want to change these paraneters. See the source code for

j peg_set _col orspace(), in jcparamc, for details.

For decompression, the JPEG file's color space is given in jpeg_col or_space,
and this is transforned to the output col or space out_col or_space.
j peg_read_header's setting of jpeg_color_space can be relied on if the file
conforns to JFIF or Adobe conventions, but otherwise it is no better than a
guess. If you know the JPEG file's color space for certain, you can override
j peg_read_header's guess by setting jpeg_col or_space. |peg_read_header also
sel ects a default output color space based on (its guess of) jpeg_col or_space;
set out_col or_space to override this. Again, you nust select a supported
transformation. jdcolor.c currently supports

YChCr => GRAYSCALE

YChCr => RGB

YCCK => CMWYK
as well as the null transforns.

The two-pass col or quantizer, jquant2.c, is specialized to handl e RGB data
(it weights distances appropriately for RGB colors). You'll need to nodify
the code if you want to use it for non-RG output color spaces. Note that

jquant2.c is used to map to an application-supplied colormap as well as for
t he normal two-pass colormap sel ection process.

CAUTION: it appears that Adobe Photoshop wites inverted data in CWK JPEG
files: O represents 100% i nk coverage, rather than 0% ink as you' d expect.
This is arguably a bug in Photoshop, but if you need to work wi th Photoshop
CWK files, you will have to deal with it in your application. W cannot
"fix" this in the library by inverting the data during the CMYK<=>YCCK
transform because that would break other applications, notably Ghostscript.
Phot oshop versions prior to 3.0 wite EPS files contai ning JPEG encoded CMYK
data in the sane inverted-YCCK representation used in bare JPEG files, but

t he surroundi ng Post Script code perfornms an inversion using the PS inmage
operator. | amtold that Photoshop 3.0 will wite uninverted YCCK in

EPS/ JPEG files, and will omt the PS-level inversion. (But the data
polarity used in bare JPEG files will not change in 3.0.) In either case,
the JPEG library nmust not invert the data itself, or else CGhostscript would
read these EPS files incorrectly.

Error handling

VWhen the default error handler is used, any error detected inside the JPEG
routines will cause a nmessage to be printed on stderr, followed by exit().
You can supply your own error handling routines to override this behavior
and to control the treatment of nonfatal warnings and trace/ debug nessages.
The file exanple.c illustrates the nost combn case, which is to have the
application regain control after an error rather than exiting.

The JPEG |ibrary never wites any nmessage directly; it always goes through
the error handling routines. Three classes of nmessages are recognized:

* Fatal errors: the library cannot continue.

* Warnings: the library can continue, but the data is corrupt, and a

damaged output image is likely to result.

* Trace/informational nessages. These come with a trace |level indicating
the i nmportance of the nessage; you can control the verbosity of the
program by adjusting the maxi mumtrace level that will be displayed

You may, if you wish, sinply replace the entire JPEG error handling nodul e
(jerror.c) with your own code. However, you can avoid code duplication by
only replacing sone of the routines depending on the behavi or you need.

This is acconplished by calling jpeg _std_error() as usual, but then overriding
some of the method pointers in the jpeg error_ngr struct, as illustrated by
exanpl e. c.

Al of the error handling routines will receive a pointer to the JPEG object
(a j_commn_ptr which points to either a jpeg_conpress_struct or a

j peg_deconpress_struct; if you need to tell which, test the is_deconpressor
field). This struct includes a pointer to the error nmanager struct inits
"err" field. Frequently, customerror handler routines will need to access
additi onal data which is not known to the JPEG library or the standard error
handl er. The nost convenient way to do this is to enbed either the JPEG
object or the jpeg_error_ngr struct in a larger structure that contains
additional fields; then casting the passed pointer provides access to the
additional fields. Again, see exanple.c for one way to do it.

The i ndi vidual methods that you m ght wish to override are:

error_exit (j_comon_ptr cinfo)
Receives control for a fatal error. Information sufficient to
generate the error nessage has been stored in cinfo->err; cal
out put _nessage to display it. Control must NOT return to the caller
generally this routine will exit() or |ongjnp() sonmewhere.
Typically you woul d override this routine to get rid of the exit()
default behavior. Note that if you continue processing, you should
cl ean up the JPEG object with jpeg abort() or jpeg_destroy().

out put _nessage (j_conmmon_ptr cinfo)
Actual output of any JPEG nessage. Override this to send nessages
sonmewhere other than stderr. Note that this nethod does not know
how to generate a nessage, only where to send it

format _message (j _common_ptr cinfo, char * buffer)
Constructs a readable error nessage string based on the error info
stored in cinfo->err. This nmethod is called by output_nessage. Few
applications should need to override this nmethod. One possible
reason for doing so is to inplenent dynam c switching of error message
| anguage.

em t_message (j_comon_ptr cinfo, int nsg_level)
Deci de whether or not to enmit a warning or trace nessage; if so
call s out put _nmessage. The main reason for overriding this nethod
woul d be to abort on warnings. nsg_level is -1 for warnings,
0 and up for trace nessages.

Only error_exit() and emt_nessage() are called fromthe rest of the JPEG
library; the other two are internal to the error handler

The actual nessage texts are stored in an array of strings which is pointed to
by the field err->j peg_nessage table. The nessages are nunbered fromO to

err->l ast_jpeg_nessage, and it is these code nunbers that are used in the
JPEG library code. You could replace the nmessage texts (for instance, with
messages in French or German) by changing the nmessage table pointer. See
jerror.h for the default texts. CAUTION this table will alnpbst certainly
change or grow fromone library version to the next.

It may be useful for an application to add its own nessage texts that are
handl ed by the same nechanism The error handl er supports a second "add-on"
message table for this purpose. To define an addon table, set the pointer
err->addon_nessage_t abl e and the nessage nunbers err->first_addon_nessage and
err->| ast _addon_nessage. |f you nunber the addon nmessages begi nning at 1000
or so, you won't have to worry about conflicts with the library's built-in
messages. See the sanple applications cjpeg/djpeg for an exanple of using
addon nessages (the addon nessages are defined in cderror.h).

Actual invocation of the error handler is done via macros defined in jerror.h:

ERREXI Tn(. . .) for fatal errors
WARNMSN(. . .) for corrupt-data warnings
TRACENMBN(. . .) for trace and informational messages.

These nmacros store the nessage code and any additional paranmeters into the
error handler struct, then invoke the error_exit() or emt_nessage() nethod.
The variants of each macro are for varying nunbers of additional paraneters.
The additional paraneters are inserted into the generated nessage using
standard printf() format codes.

See jerror.h and jerror.c for further details.

Conpressed data handling (source and destinati on managers)

The JPEG conpression library sends its conpressed data to a "destination
manager” nodul e. The default destination manager just wites the data to a
stdio stream but you can provide your own manager to do sonething el se
Simlarly, the deconpression library calls a "source manager"” to obtain the
conpressed data; you can provide your own source manager if you want the data
to cone from somewhere other than a stdio stream

In both cases, conpressed data is processed a bufferload at a time: the
destination or source nmanager provides a work buffer, and the library invokes
t he manager only when the buffer is filled or enptied. (You could define a
one-character buffer to force the manager to be invoked for each byte, but
that would be rather inefficient.) The buffer's size and |ocation are
controll ed by the manager, not by the library. For exanple, if you desired to
deconpress a JPEG datastreamthat was all in nenory, you could just make the
buf fer pointer and length point to the original data in nmenmory. Then the
buffer-rel oad procedure would be invoked only if the deconpressor ran off the
end of the datastream which would indicate an erroneous datastream

The work buffer is defined as an array of datatype JOCTET, which is generally
"char" or "unsigned char". On a machine where char is not exactly 8 bits

wi de, you nust define JOCTET as a wi der data type and then nodify the data
source and destination nodules to transcribe the work arrays into 8-bit units
on external storage.

A data destination manager struct contains a pointer and count defining the
next byte to wite in the work buffer and the remai ning free space:

JOCTET * next_output_byte; /* => next byte to wite in buffer */
size_t free_in_buffer; /* # of byte spaces remaining in buffer */

The library increnents the pointer and decrenments the count until the buffer
is filled. The manager's enpty_out put_buffer nethod nust reset the pointer
and count. The manager is expected to renenber the buffer's starting address
and total size in private fields not visible to the library.

A data destination manager provides three nethods:

init_destination (j_conpress_ptr cinfo)
Initialize destination. This is called by jpeg_start_conpress()
before any data is actually witten. It nust initialize
next _output_byte and free_in_buffer. free_in_buffer mnmust be
initialized to a positive val ue.

enpty_out put _buffer (j_conpress_ptr cinfo)
This is called whenever the buffer has filled (free_in_buffer
reaches zero). In typical applications, it should wite out the
entire buffer (use the saved start address and buffer |ength;
ignore the current state of next_output_byte and free_in_buffer).
Then reset the pointer & count to the start of the buffer, and
return TRUE indicating that the buffer has been dunped.
free_in_buffer nmust be set to a positive value when TRUE is
returned. A FALSE return should only be used when I/O suspension is
desired (this operating node is discussed in the next section).

termdestination (j_conpress_ptr cinfo)
Term nate destination --- called by jpeg_finish_conpress() after al
data has been witten. |In nost applications, this nust flush any
data remaining in the buffer. Use either next_output_byte or
free in_buffer to determ ne how nmuch data is in the buffer

termdestination() is NOT called by jpeg_abort() or jpeg_destroy(). |If you
want the destination nanager to be cleaned up during an abort, you nmust do it
yoursel f.

You will also need code to create a jpeg_destination_ngr struct, fill inits
met hod pointers, and insert a pointer to the struct into the "dest"” field of
t he JPEG conpression object. This can be done in-line in your setup code if
you like, but it's probably cleaner to provide a separate routine simlar to
the jpeg_stdio_dest() routine of the supplied destination nanager

Deconpr essi on source managers follow a parallel design, but with sone
addi ti onal framm shes. The source manager struct contains a pointer and count
defining the next byte to read fromthe work buffer and the nunber of bytes
remai ni ng:

const JOCTET * next _input_byte; /* => next byte to read frombuffer */
size_t bytes_in_buffer; /* # of bytes remaining in buffer */

The library increnents the pointer and decrenments the count until the buffer
is enptied. The manager's fill _input_buffer method nust reset the pointer and
count. In nost applications, the manager nust renmenber the buffer's starting
address and total size in private fields not visible to the library.

A data source manager provides five nethods:

init_source (j_deconpress_ptr cinfo)
Initialize source. This is called by jpeg_read_header() before any
data is actually read. Unlike init_destination(), it may |eave
bytes_in_buffer set to O (in which case a fill _input_buffer() cal
wi |l occur imediately).

Fill i

nput _buffer (j_deconpress_ptr cinfo)

This is called whenever bytes_in_buffer has reached zero and nore
data is wanted. In typical applications, it should read fresh data
into the buffer (ignoring the current state of next_input_byte and
bytes_in_buffer), reset the pointer & count to the start of the
buffer, and return TRUE indicating that the buffer has been rel oaded.
It is not necessary to fill the buffer entirely, only to obtain at

| east one nore byte. bytes_ in_buffer MJST be set to a positive val ue
if TRUEis returned. A FALSE return should only be used when I/O
suspension is desired (this node is discussed in the next section).

ski p_input _data (j_deconpress_ptr cinfo, |ong numbytes)
Skip numbytes worth of data. The buffer pointer and count should

be advanced over num bytes input bytes, refilling the buffer as
needed. This is used to skip over a potentially |arge anount of
uni nteresting data (such as an APPn nmarker). In sonme applications

it may be possible to optinize away the reading of the skipped data,
but it's not clear that being smart is worth much trouble; |arge
ski ps are unconmon. bytes_in_buffer may be zero on return

A zero or negative skip count should be treated as a no-op.

resync_to_restart (j_deconpress_ptr cinfo, int desired)
This routine is called only when the deconpressor has failed to find
a restart (RSTn) nmarker where one is expected. Its missionis to
find a suitable point for resum ng deconpression. For nost
applications, we recommend that you just use the default resync
procedure, jpeg_resync_to restart(). However, if you are able to back
up in the input data stream or if you have a-priori know edge about
the Iikely location of restart markers, you nmay be able to do better
Read the read_restart_marker() and jpeg_resync_to_restart() routines
in jdmarker.c if you think you' d like to inplenent your own resync
pr ocedur e.

termsource (j_deconpress_ptr cinfo)
Term nate source --- called by jpeg_finish_deconpress() after al
data has been read. Oten a no-op

For both fill _input_buffer() and skip_input_data(), there is no such thing
as an EOF return. |If the end of the file has been reached, the routine has
a choice of exiting via ERREXIT() or inserting fake data into the buffer

In nost cases, generating a warning nmessage and inserting a fake EQ marker
is the best course of action --- this will allow the deconpressor to output
however much of the image is there. |In pathol ogical cases, the deconpressor
may swal l ow the EO and again demand data ... just keep feeding it fake EO s.
jdatasrc.c illustrates the reconmended error recovery behavi or

termsource() is NOT called by jpeg_abort() or jpeg_destroy(). If you want
t he source nanager to be cleaned up during an abort, you nust do it yourself.

You will also need code to create a jpeg_source_ngr struct, fill inits method
pointers, and insert a pointer to the struct into the "src" field of the JPEG
deconpressi on object. This can be done in-line in your setup code if you
like, but it's probably cleaner to provide a separate routine simlar to the
jpeg_stdio_src() routine of the supplied source manager

For more information, consult the stdio source and destinati on managers
in jdatasrc.c and jdatadst.c.

I/ O suspensi on

Sonme applications need to use the JPEG |library as an increnmental menory-to-
menory filter: when the conpressed data buffer is filled or enptied, they want
control to return to the outer | oop, rather than expecting that the buffer can
be enptied or rel oaded within the data source/destinati on manager subrouti ne.
The library supports this need by providing an "1/ 0O suspensi on" node, which we
describe in this section.

The 1/ 0O suspensi on node is not a panacea: nothing is guaranteed about the
maxi mum anmount of tine spent in any one call to the library, so it will not
elimnate response-time problens in single-threaded applications. If you
need guar anteed response tinme, we suggest you "bite the bullet” and inpl enment
areal nulti-tasking capability.

To use 1/ 0O suspension, cooperation is needed between the calling application
and the data source or destination nanager; you will always need a custom
source/ destinati on nmanager. (Please read the previous section if you haven't
already.) The basic idea is that the enpty_out put_buffer() or

fill _input_buffer() routine is a no-op, nerely returning FALSE to indicate
that it has done nothing. Upon seeing this, the JPEG I|ibrary suspends
operation and returns to its caller. The surrounding application is
responsi ble for enptying or refilling the work buffer before calling the
JPEG li brary again.

Conpr essi on suspensi on:

For conpressi on suspension, use an enpty_output_buffer() routine that returns
FALSE; typically it will not do anything else. This will cause the
conpressor to return to the caller of jpeg wite_scanlines(), with the return
val ue indicating that not all the supplied scanlines have been accepted.

The application nust make nmore roomin the output buffer, adjust the output
buf fer pointer/count appropriately, and then call jpeg_wite_scanlines()
again, pointing to the first unconsunmed scanli ne.

VWhen forced to suspend, the conpressor will backtrack to a conveni ent stopping
point (usually the start of the current MCU); it will regenerate sonme out put
data when restarted. Therefore, although enpty_output_buffer() is only

call ed when the buffer is filled, you should NOT wite out the entire buffer
after a suspension. Wite only the data up to the current position of

next _output _byte/free_in_buffer. The data beyond that point will be
regenerated after resunption

Because of the backtracki ng behavior, a good-size output buffer is essential
for efficiency; you don't want the conpressor to suspend often. (In fact, an
overly small buffer could lead to infinite looping, if a single MCU required

nore data than would fit in the buffer.) W reconmend a buffer of at |east
several Kbytes. You may want to insert explicit code to ensure that you don't
call jpeg_wite_scanlines() unless there is a reasonabl e amount of space in
the output buffer; in other words, flush the buffer before trying to conpress
nore data

The conpressor does not allow suspension while it is trying to wite JPEG
mar kers at the beginning and end of the file. This neans that:
* At the beginning of a conpression operation, there nust be enough free
space in the output buffer to hold the header markers (typically 600 or
so bytes). The recomrended buffer size is bigger than this anyway, so
this is not a problemas Iong as you start with an enpty buffer. However,
this restriction mght catch you if you insert |arge special markers, such

as a JFIF thunbnail image, without flushing the buffer afterwards.
* When you call jpeg finish_conpress(), there must be enough space in the
out put buffer to emt any buffered data and the final EO marker. 1In the

current inplementation, half a dozen bytes should suffice for this, but
for safety's sake we recommend ensuring that at |east 100 bytes are free
before calling jpeg finish_conpress().

A nore significant restriction is that jpeg finish_conmpress() cannot suspend.
Thi s means you cannot use suspension with nulti-pass operating nodes, namely
Huf f man code optim zation and multiple-scan output. Those nodes wite the
whole file during jpeg finish_conpress(), which will certainly result in
buffer overrun. (Note that this restriction applies only to conpression

not deconpression. The deconpressor supports input suspension in all of its
operati ng nodes.)

Deconpr essi on suspensi on

For deconpression suspension, use a fill _input_buffer() routine that sinply
returns FALSE (except perhaps during error recovery, as discussed bel ow).
This will cause the deconpressor to return to its caller with an indication
t hat suspensi on has occurred. This can happen at four places:

* jpeg_read_header(): will return JPEG SUSPENDED

* jpeg_start_deconpress(): will return FALSE, rather than its usual TRUE

* jpeg_read_scanlines(): will return the nunber of scanlines already

conpl eted (possibly 0).

* jpeg_finish_deconpress(): will return FALSE, rather than its usual TRUE
The surroundi ng application nmust recogni ze these cases, load nore data into
the input buffer, and repeat the call. 1In the case of jpeg_read_scanlines(),
i ncrenent the passed pointers past any scanlines successfully read.

Just as with conpression, the deconpressor will typically backtrack to a
conveni ent restart point before suspending. When fill _input_buffer() is
cal l ed, next_input_byte/bytes in_buffer point to the current restart point,
which is where the deconpressor will backtrack to if FALSE is returned.

The data beyond that position nust NOT be discarded if you suspend; it needs
to be re-read upon resunption. In nost inplenentations, you'll need to shift
this data down to the start of your work buffer and then | oad nore data after
it. Again, this behavior neans that a several -Kbyte work buffer is essential
for decent performance; furthernore, you should | oad a reasonabl e anount of
new data before resum ng deconpression. (If you | oaded, say, only one new
byte each tinme around, you could waste a LOT of cycles.)

The skip_i nput _data() source manager routine requires special care in a
suspensi on scenario. This routine is NOT granted the ability to suspend the

deconpressor; it can decrement bytes_in_buffer to zero, but no nore. |If the
requested skip di stance exceeds the amount of data currently in the input
buffer, then skip_input_data() nust set bytes_in_buffer to zero and record the
addi ti onal skip distance sonewhere el se. The deconpressor will imediately
call fill_input_buffer(), which should return FALSE, which will cause a
suspension return. The surroundi ng application nust then arrange to discard

t he recorded nunber of bytes before it resunes |oading the input buffer

(Yes, this design is rather baroque, but it avoids conplexity in the far nore
common case where a non-suspendi ng source manager is used.)

If the input data has been exhausted, we recommend that you emit a warning
and insert dummy EOQ markers just as a non-suspendi ng data source manager
woul d do. This can be handled either in the surrounding application |ogic or
within fill _input_buffer(); the latter is probably nore efficient. |If

fill _input_buffer() knows that no nore data is available, it can set the

poi nter/count to point to a dutmy EA marker and then return TRUE just as
though it had read nore data in a non-suspending situation

The deconpressor does not attenpt to suspend within any JPEG marker; it wll
backtrack to the start of the marker. Hence the input buffer nust be large
enough to hold the longest marker in the file. W recommend at |east a 2K
buffer. The buffer would need to be 64K to allow for arbitrary COM or APPn
mar kers, but the deconpressor does not actually try to read these; it just
skips themby calling skip_input_data(). |If you provide a special marker
handl i ng routine that does | ook at such markers, coping with buffer overfl ow
is your problem Odinary JPEG markers should normally not exceed a few
hundred bytes each (DHT tables are typically the |longest). For robustness
agai nst damaged marker | ength counts, you may wish to insert a test in your
application for the case that the input buffer is conpletely full and yet the
decoder has suspended wi thout consum ng any data --- otherwise, if this
situation did occur, it wuld I ead to an endl ess | oop

Mul ti pl e-buffer managenent:

In sone applications it is desirable to store the conpressed data in a |inked
list of buffer areas, so as to avoid data copying. This can be handl ed by
havi ng enpty_out put _buffer() or fill _input_buffer() set the pointer and count
to reference the next available buffer; FALSE is returned only if no nore
buffers are avail able. Although seenmingly straightforward, there is a
pitfall in this approach: the backtrack that occurs when FALSE is returned

could back up into an earlier buffer. For exanple, when fill _input_buffer()
is called, the current pointer & count indicate the backtrack restart point.
Since fill _input_buffer() will set the pointer and count to refer to a new
buffer, the restart position nmust be saved somewhere el se. Suppose a second
call to fill _input_buffer() occurs in the same library call, and no
additional input data is available, so fill_input_buffer nust return FALSE

If the JPEG library has not noved the pointer/count forward in the current
buffer, then *the correct restart point is the saved position in the prior
buffer*. Prior buffers may be discarded only after the library establishes
arestart point within a later buffer. Simlar remarks apply for output into
a chain of buffers.

The library will never attenpt to backtrack over a skip_input_data() call
so any ski pped data can be permanently discarded. You still have to dea
with the case of skipping not-yet-received data, however.

It's nmuch sinpler to use only a single buffer; when fill _input_buffer() is

cal l ed, nove any unconsuned data (beyond the current pointer/count) down to

t he begi nning of this buffer and then | oad new data into the renai ni ng buffer
space. This approach requires a little nore data copying but is far easier
to get right.

Progressi ve JPEG support

Progressive JPEG rearranges the stored data into a series of scans of
increasing quality. 1In situations where a JPEGfile is transmitted across a
sl ow comuni cations |ink, a decoder can generate a lowquality inmage very
quickly fromthe first scan, then gradually inprove the displayed quality as
nore scans are received. The final image after all scans are conplete is
identical to that of a regular (sequential) JPEGfile of the same quality
setting. Progressive JPEGfiles are often slightly smaller than equival ent
sequential JPEG files, but the possibility of incremental display is the main
reason for using progressive JPEG

The 1JG encoder |ibrary generates progressive JPEG files when given a
suitable "scan script" defining howto divide the data into scans.

Creation of progressive JPEG files is otherw se transparent to the encoder
Progressive JPEG files can al so be read transparently by the decoder library.
If the decoding application sinply uses the library as defined above, it

will receive a final decoded image w thout any indication that the file was
progressive. O course, this approach does not allow increnental display.

To performincrenental display, an application needs to use the decoder
library's "buffered-image" node, in which it receives a decoded i mage
multiple times.

Each di spl ayed scan requires about as much work to decode as a full JPEG

i mage of the sane size, so the decoder nust be fairly fast in relation to the
data transm ssion rate in order to nake increnmental display useful. However
it is possible to skip displaying the image and sinply add the incom ng bits
to the decoder's coefficient buffer. This is fast because only Huffman
decodi ng need be done, not |IDCT, upsanpling, colorspace conversion, etc.

The 1JG decoder library allows the application to switch dynam cally between
di spl ayi ng the image and sinply absorbing the incomng bits. A properly
coded application can automatically adapt the nunber of display passes to
suit the tine available as the inage is received. Also, a fina

hi gher-quality display cycle can be performed fromthe buffered data after
the end of the file is reached.

Progressi ve conpression:

To create a progressive JPEG file (or a nultiple-scan sequential JPEG file),
set the scan_info cinfo field to point to an array of scan descriptors, and
perform conpression as usual. Instead of constructing your own scan list,
you can call the jpeg_sinple_progression() helper routine to create a
recommended progressi on sequence; this nethod shoul d be used by al
applications that don't want to get involved in the nitty-gritty of
progressive scan sequence design. (If you want to provide user control of
scan sequences, you may wi sh to borrow the scan script reading code found
inrdswitch.c, so that you can read scan script files just like cjpeg s.)
VWhen scan_info is not NULL, the conpression library will store DCT'd data
into a buffer array as jpeg wite_scanlines() is called, and will emt al

t he requested scans during jpeg finish _conpress(). This inplies that

mul ti pl e-scan out put cannot be created with a suspendi ng data destination
manager, since jpeg _finish_conpress() does not support suspension. W
shoul d al so note that the conpressor currently forces Huffman optim zation
node when creating a progressive JPEG file, because the default Huffman
tabl es are unsuitable for progressive files.

Pr ogressi ve deconpressi on:

VWhen buffered-image node is not used, the decoder library will read all of
a multi-scan file during jpeg _start_deconpress(), so that it can provide a
final decoded inmage. (Here "multi-scan"” means either progressive or

mul ti-scan sequential.) This makes nulti-scan files transparent to the
decodi ng application. However, existing applications that used suspendi ng
input with version 5 of the IJGlibrary will need to be nodified to check
for a suspension return fromjpeg_start_deconpress().

To performincrenental display, an application nmust use the library's
buf f ered-i nage node. This is described in the next section

Buf f er ed-i nage node

In buffered-inage node, the library stores the partially decoded inmage in a
coefficient buffer, fromwhich it can be read out as many tinmes as desired.
This nmode is typically used for increnental display of progressive JPEG files,
but it can be used with any JPEG file. Each scan of a progressive JPEG file
adds nore data (nore detail) to the buffered inage. The application can
display in lockstep with the source file (one display pass per input scan),

or it can allow input processing to outrun display processing. By naking

i nput and di splay processing run independently, it is possible for the
application to adapt progressive display to a wi de range of data transm ssion
rates.

The basic control flow for buffered-inage decoding is

j peg_create_deconpress()
set data source
j peg_read_header ()
set overall deconpression paraneters
cinfo.buffered_i mage = TRUE; /[* select buffered-inmge node */
j peg_start_deconpress()
for (each output pass) {
adj ust output deconpression paraneters if required
j peg_start _out put () /* start a new out put pass */
for (all scanlines in imge) {
j peg_read_scanlines()
di spl ay scanli nes
}
j peg_finish_out put () /* term nate output pass */
}
j peg_finish_deconpress()
j peg_destroy_deconpress()

This differs fromordinary unbuffered decoding in that there is an additiona
| evel of l|ooping. The application can choose how many out put passes to nake
and how to display each pass.

The sinpl est approach to di splaying progressive inmages is to do one display
pass for each scan appearing in the input file. 1In this case the outer |oop
condition is typically

while (! jpeg_input_conpl ete(&cinfo))
and the start-output call should read

j peg_start_out put (&ci nfo, cinfo.input_scan_nunber);
The second paraneter to jpeg_start_output() indicates which scan of the input
file is to be displayed; the scans are nunbered starting at 1 for this
purpose. (You can use a loop counter starting at 1 if you like, but using
the library's input scan counter is easier.) The library automatically reads
data as necessary to conplete each requested scan, and jpeg_fini sh_output ()
advances to the next scan or end-of-inmage marker (hence input_scan_nunber
will be increnented by the tine control arrives back at jpeg_start_output()).
Wth this technique, data is read fromthe input file only as needed, and
i nput and out put processing run in |ockstep.

After reading the final scan and reaching the end of the input file, the
buffered i nage remains available; it can be read additional tines by
repeating the jpeg_start_output()/jpeg_read_scanlines()/jpeg_finish_output()
sequence. For exanple, a useful technique is to use fast one-pass col or
guanti zation for display passes made while the image is arriving, followed by
a final display pass using two-pass quantization for highest quality. This
is done by changing the library paraneters before the final output pass.
Changi ng paraneters between passes is discussed in detail bel ow

In general the last scan of a progressive file cannot be recognized as such
until after it is read, so a post-input display pass is the best approach if
you want special processing in the final pass.

VWhen done with the image, be sure to call jpeg finish_deconpress() to rel ease
the buffered inage (or just use jpeg_destroy_deconpress()).

If input data arrives faster than it can be displayed, the application can
cause the library to decode input data in advance of what's needed to produce
output. This is done by calling the routine jpeg_consume_input().
The return value is one of the follow ng:
JPEG _REACHED SCs: reached an SOS narker (the start of a new scan)
JPEG _REACHED EQ : reached the EAQ marker (end of inmage)
JPEG ROW COVPLETED: conpl eted readi ng one MCU row of conpressed data
JPEG_SCAN COWVPLETED: conpl eted reading last MCU row of current scan

JPEG_SUSPENDED: suspended before conpl eting any of the above
(JPEG_SUSPENDED can occur only if a suspending data source is used.) This
routine can be called at any tine after initializing the JPEG object. It

reads sonme additional data and returns when one of the indicated significant
events occurs. (If called after the EO marker is reached, it wll
i mediately return JPEG REACHED EAQ wi thout attenpting to read nore data.)

The library's output processing will automatically call jpeg_consune_input()
whenever the output processing overtakes the input; thus, sinple | ockstep
di splay requires no direct calls to jpeg_consune_input(). But by adding
calls to jpeg_consune_input(), you can absorb data in advance of what is
bei ng di spl ayed. This has two benefits:

* You can limt buildup of unprocessed data in your input buffer

* You can elimnate extra display passes by paying attention to the

state of the library's input processing.

The first of these benefits only requires interspersing calls to

j peg_consune_input () with your display operations and any other processing
you may be doing. To avoid wasting cycles due to backtracking, it's best to
call jpeg_consune_input() only after a hundred or so new bytes have arrived.
This is discussed further under "1/O suspension”, above. (Note: the JPEG
library currently is not thread-safe. You nmust not call jpeg_consune_input()
fromone thread of control if a different library routine is working on the
same JPEG object in another thread.)

VWhen i nput arrives fast enough that nore than one new scan is available
before you start a new output pass, you may as well skip the output pass
corresponding to the conpleted scan. This occurs for free if you pass

ci nfo.input_scan_nunber as the target scan nunber to jpeg_start_output().
The i nput _scan_nunber field is sinply the index of the scan currently being
consumed by the input processor. You can ensure that this is up-to-date by
enptying the input buffer just before calling jpeg start_output(): cal

j peg_consune_i nput () repeatedly until it returns JPEG SUSPENDED or
JPEG_REACHED EQ .

The target scan nunber passed to jpeg_start_output() is saved in the

ci nfo. out put _scan_nunber field. The library's output processing calls

j peg_consune_i nput () whenever the current input scan nunber and row within
that scan is less than or equal to the current output scan nunber and row
Thus, input processing can "get ahead" of the output processing but is not
allowed to "fall behind". You can achieve several different effects by
mani pul ating this interlock rule. For exanmple, if you pass a target scan
nunber greater than the current input scan nunber, the output processor will
wait until that scan starts to arrive before producing any output. (To avoid
an infinite |oop, the target scan nunber is automatically reset to the |ast
scan nunber when the end of image is reached. Thus, if you specify a large
target scan nunber, the library will just absorb the entire input file and
then performan output pass. This is effectively the sane as what

j peg_start_deconpress() does when you don't sel ect buffered-inmge node.)
VWhen you pass a target scan nunmber equal to the current input scan nunber,
the image is displayed no faster than the current input scan arrives. The
final possibility is to pass a target scan nunber |ess than the current input
scan nunber; this disables the input/output interlock and causes the output
processor to sinply display whatever it finds in the image buffer, without
waiting for input. (However, the library will not accept a target scan
nunber | ess than one, so you can't avoid waiting for the first scan.)

VWhen data is arriving faster than the output display processing can advance
t hrough the image, jpeg _consune_input() will store data into the buffered

i mage beyond the point at which the output processing is readi ng data out
again. |If the input arrives fast enough, it may "wap around” the buffer to
the point where the input is nore than one whol e scan ahead of the output.

If the output processing sinply proceeds through its display pass w thout
payi ng attention to the input, the effect seen on-screen is that the |ower
part of the image is one or nore scans better in quality than the upper part.
Then, when the next output scan is started, you have a choice of what target
scan nunber to use. The recommended choice is to use the current input scan
nunber at that time, which inplies that you' ve skipped the output scans
corresponding to the input scans that were conpleted while you processed the
previ ous output scan. In this way, the decoder automatically adapts its
speed to the arriving data, by skipping output scans as necessary to keep up
with the arriving data.

VWhen using this strategy, you'll want to be sure that you performa fina
out put pass after receiving all the data; otherw se your |ast display may not
be full quality across the whole screen. So the right outer loop logic is
sonmet hing like this:
do {

absorb any waiting input by calling jpeg_consune_input()

final _pass = jpeg_i nput_conpl et e(&i nf 0) ;

adj ust output deconpression paraneters if required

j peg_start_out put (&i nfo, cinfo.input_scan_nunber);

j peg_fini sh_out put ()
} while (! final_pass);
rather than quitting as soon as jpeg_i nput_conplete() returns TRUE. This
arrangenent nakes it sinple to use higher-quality decodi ng paraneters
for the final pass. But if you don't want to use special paraneters for
the final pass, the right loop logic is like this:
for (;:) {
absorb any waiting input by calling jpeg_consune_input()
j peg_start_out put (&ci nfo, cinfo.input_scan_nunber);
j peg_fini sh_out put ()
i f (jpeg_input_conplete(&cinfo) &&
ci nfo.input_scan_nunber == ci nfo. output_scan_nunber)
br eak;
}
In this case you don't need to know i n advance whether an output pass is to
be the | ast one, so it's not necessary to have reached EOF before starting
the final output pass; rather, what you want to test is whether the output
pass was perforned in sync with the final input scan. This formof the |oop
wi Il avoid an extra output pass whenever the decoder is able (or nearly able)
to keep up with the incom ng data.

VWhen the data transm ssion speed is high, you mght begin a display pass,
then find that much or all of the file has arrived before you can conplete
the pass. (You can detect this by noting the JPEG REACHED EQ return code
fromjpeg_consunme_input (), or equivalently by testing jpeg_input_conplete().)
In this situation you may wi sh to abort the current display pass and start a
new one using the newy arrived information. To do so, just cal

jpeg_finish output() and then start a new pass with jpeg_start_output().

A variant strategy is to abort and restart display if nore than one conplete
scan arrives during an output pass; this can be detected by noting

JPEG REACHED SOS returns and/or exam ning cinfo.input_scan_nunber. This

i dea should be enployed with caution, however, since the display process

m ght never get to the bottom of the image before being aborted, resulting
in the |lower part of the screen being several passes worse than the upper

In nost cases it's probably best to abort an output pass only if the whole
file has arrived and you want to begin the final output pass i mediately.

VWhen receiving data across a conmmuni cation |ink, we recommend al ways using
the current input scan nunmber for the output target scan nunber; if a

hi gher-quality final pass is to be done, it should be started (aborting any

i nconpl ete out put pass) as soon as the end of file is received. However,
many ot her strategies are possible. For exanple, the application can exani ne
the paraneters of the current input scan and decide whether to display it or
not. |If the scan contains only chrona data, one m ght choose not to use it
as the target scan, expecting that the scan will be small and will arrive

quickly. To skip to the next scan, call jpeg_consune_input() until it
returns JPEG REACHED SOS or JPEG REACHED EO. O just use the next higher
nunber as the target scan for jpeg_start_output(); but that nethod doesn't
| et you inspect the next scan's paraneters before deciding to display it.

In buffered-i nage node, jpeg_start_deconpress() never perforns input and

t hus never suspends. An application that uses input suspension wth

buf f er ed-i nage node nust be prepared for suspension returns fromthese

routines:

* jpeg_start_output() perfornms input only if you request 2-pass quantization
and the target scan isn't fully read yet. (This is discussed bel ow.)

* jpeg_read_scanlines(), as always, returns the nunber of scanlines that it
was abl e to produce before suspending.

* jpeg_finish_ output() will read any narkers followi ng the target scan
up to the end of the file or the SOS marker that begins another scan
(But it reads no input if jpeg_consune_input() has already reached the
end of the file or a SOS nmarker beyond the target output scan.)

* jpeg_finish_deconpress() will read until the end of file, and thus can
suspend if the end hasn't already been reached (as can be tested by
calling jpeg_i nput_conplete()).

jpeg_start_output(), jpeg_finish output(), and jpeg_finish_deconpress()

all return TRUE if they conpleted their tasks, FALSE if they had to suspend.

In the event of a FALSE return, the application nmust [oad nore input data

and repeat the call. Applications that use non-suspendi ng data sources need

not check the return values of these three routines.

It is possible to change decodi ng paraneters between output passes in the
buf f ered-i nage node. The decoder library currently supports only very
limted changes of paraneters. ONLY THE FOLLOW NG par anet er changes are

all owed after jpeg_start_deconpress() is called:

* dct_nethod can be changed before each call to jpeg_start_output().

For exanple, one could use a fast DCT nmethod for early scans, changi ng
to a higher quality method for the final scan

* dither_node can be changed before each call to jpeg_start_output();
of course this has no inpact if not using color quantization. Typically
one woul d use ordered dither for initial passes, then switch to
Fl oyd- Stei nberg dither for the final pass. Caution: changing dither node
can cause nore nenory to be allocated by the library. Al though the anount
of menmory involved is not large (a scanline or so), it may cause the
initial max_nmenory_to_use specification to be exceeded, which in the worst
case would result in an out-of-nmenory failure

* do_bl ock_snoot hi ng can be changed before each call to jpeg_start_output().
This setting is relevant only when decodi ng a progressive JPEG i mage.
During the first DC-only scan, block snoothing provides a very "fuzzy" | ook
i nstead of the very "blocky" | ook seen without it; which is better seens a
matter of personal taste. But block smoothing is nearly always a win
during | ater stages, especially when decodi ng a successive-approxi mation
i mage: snmoot hing helps to hide the slight blockiness that otherw se shows
up on snooth gradients until the | owest coefficient bits are sent.

* Col or quantization node can be changed under the rul es described bel ow
You *cannot* change between full-col or and quantized output (because that
woul d alter the required 1/0O buffer sizes), but you can change which
quanti zation nmethod is used.

VWhen generating col or-quanti zed output, changing quantization nethod is a

very useful way of swi tching between high-speed and hi gh-quality display.
The library allows you to change anong its three quantization mnethods:
1. Single-pass quantization to a fixed col or cube.
Sel ected by cinfo.two_pass_quanti ze = FALSE and ci nfo.col ormap = NULL
2. Single-pass quantization to an application-supplied col ormap
Sel ected by setting cinfo.colormap to point to the col ormap (the val ue of
two_pass_quantize is ignored); also set cinfo.actual _nunber_of _col ors.
3. Two-pass quantization to a col ormap chosen specifically for the image.
Sel ected by cinfo.two_pass_quantize = TRUE and ci nfo. col ormap = NULL
(This is the default setting selected by jpeg read _header, but it is
probably NOT what you want for the first pass of progressive display!)
These net hods offer successively better quality and | esser speed. However,
only the first method is available for quantizing in non-RG col or spaces.

| MPORTANT: because the different quantizer methods have very different

wor ki ng-storage requirenents, the library requires you to indicate which
one(s) you intend to use before you call jpeg_start_deconpress(). (If we did
not require this, the max_nenory_to_use setting would be a conplete fiction.)
You do this by setting one or nore of these three cinfo fields to TRUE

enabl e_l1pass_quant Fi xed col or cube col or map
enabl e_ext er nal _quant Ext ernal | y-suppl i ed col or map
enabl e_2pass_quant Two- pass cust om col or map

Al three are initialized FALSE by jpeg_read_header(). But

j peg_start_deconpress() automatically sets TRUE the one sel ected by the
current two_pass_quantize and col ornmap settings, so you only need to set the
enabl e flags for any other quantization nethods you plan to change to |l ater

After setting the enable flags correctly at jpeg _start_deconpress() tine, you
can change to any enabl ed quanti zati on nmethod by setting two_pass_quantize
and col ormap properly just before calling jpeg_start_output(). The follow ng
speci al rules apply:
1. You nust explicitly set cinfo.colormap to NULL when switching to 1-pass
or 2-pass node froma different node, or when you want the 2-pass
gquantizer to be re-run to generate a new col ormap
2. To switch to an external colormap, or to change to a different externa
col ormap than was used on the prior pass, you nust cal
j peg_new col ormap() after setting cinfo.col ormap
NOTE: if you want to use the sane colormap as was used in the prior pass,
you should not do either of these things. This will save sone nontrivia
swi t chover costs.
(These requirenments exi st because cinfo.colormap will always be non- NULL
after conpleting a prior output pass, since both the 1-pass and 2-pass
gquantizers set it to point to their output colormaps. Thus you have to
do one of these two things to notify the library that sonething has changed.
Yup, it's a bit klugy, but it's necessary to do it this way for backwards
conmpatibility.)

Note that in buffered-inage node, the library generates any requested col or map
during jpeg_start_output(), not during jpeg_start_deconpress().

VWhen usi ng two-pass quantization, jpeg start_output() makes a pass over the
buffered inage to determ ne the optinumcolor map; it therefore may take a
significant amount of tine, whereas ordinarily it does little work. The
progress nonitor hook is called during this pass, if defined. It is also
inmportant to realize that if the specified target scan nunber is greater than
or equal to the current input scan nunber, jpeg _start_output() wll attenpt
to consune input as it makes this pass. |If you use a suspending data source,

you need to check for a FALSE return fromjpeg_start_output() under these
conditions. The conbination of 2-pass quantization and a not-yet-fully-read
target scan is the only case in which jpeg_start_output() will consune input.

Application authors who support buffered-i nage node nay be tenpted to use it
for all JPEG i nages, even single-scan ones. This will work, but it is
inefficient: there is no need to create an inage-sized coefficient buffer for
si ngl e-scan i mages. Requesting buffered-i mage node for such an inmage wastes
menory. Wbrse, it can cost time on |arge imges, since the buffered data has
to be swapped out or witten to a tenporary file. |If you are concerned about
maxi mum perf ormance on baseline JPEG files, you should use buffered-inmage
node only when the incoming file actually has nultiple scans. This can be
tested by calling jpeg_has_nultiple_scans(), which will return a correct
result at any time after jpeg_read_header() conpletes.

It is also worth noting that when you use jpeg_consune_input() to let input
processi ng get ahead of output processing, the resulting pattern of access to
the coefficient buffer is quite nonsequential. |It's best to use the nenory
manager jmemobs.c if you can (ie, if you have enough real or virtual main
menory). |If not, at |east make sure that max_nenory_to_use is set as high as
possible. If the JPEG nenory manager has to use a tenporary file, you wll
probably see a lot of disk traffic and poor performance. (This could be

i nproved with additional work on the menory manager, but we haven't gotten
around to it yet.)

In sone applications it may be convenient to use jpeg_consume_input() for al
i nput processing, including reading the initial markers; that is, you may

wi sh to call jpeg_consume_input() instead of jpeg_read _header() during
startup. This works, but note that you nust check for JPEG REACHED SCS and
JPEG REACHED EAQ return codes as the equival ent of jpeg_read_header's codes
Once the first SOS marker has been reached, you nust cal

j peg_start _deconpress() before jpeg_consune_input() will consune nore input;
it'll just keep returning JPEG REACHED SCS until you do. If you read a
tables-only file this way, jpeg consune_input() will return JPEG REACHED EO
wi t hout ever returning JPEG REACHED SOS; be sure to check for this case.

If this happens, the deconpressor will not read any nore input until you cal
jpeg_abort() to reset it. It is OKto call jpeg_consune_input() even when not
usi ng buffered-image node, but in that case it's basically a no-op after the
initial markers have been read: it will just return JPEG SUSPENDED

Abbrevi at ed datastreans and multipl e inmages

A JPEG conpressi on or deconpression object can be reused to process nultiple
i mages. This saves a snmall ampunt of tinme per inmage by elimnating the
"create" and "destroy" operations, but that isn't the real purpose of the
feature. Rather, reuse of an object provides support for abbreviated JPEG
datastreans. (bject reuse can also sinplify processing a series of inmages in
a single input or output file. This section explains these features.

A JPEG file normally contains several hundred bytes worth of quantization
and Huffrman tables. In a situation where many images will be stored or
transmitted with identical tables, this may represent an annoyi ng over head.
The JPEG standard therefore pernmits tables to be omtted. The standard
defines three classes of JPEG datastreans:

* "Interchange" datastreanms contain an inage and all tables needed to decode
the image. These are the usual kind of JPEG file.
* "Abbreviated i mage" datastreans contain an i mage, but are m ssing some or
all of the tables needed to decode that inage.
* "Abbreviated table specification" (henceforth "tables-only") datastreans
contain only table specifications.
To decode an abbreviated image, it is necessary to | oad the mssing table(s)
into the decoder beforehand. This can be acconplished by reading a separate
tables-only file. A variant scheme uses a series of images in which the first
image is an interchange (conpl ete) datastream while subsequent ones are
abbreviated and rely on the tables |oaded by the first inage. It is assuned
that once the decoder has read a table, it will renmenber that table until a
new definition for the same table nunber is encountered.

It is the application designer's responsibility to figure out how to associate
the correct tables with an abbreviated inage. While abbrevi ated dat astreans
can be useful in a closed environnent, their use is strongly discouraged in
any situation where data exchange with other applications m ght be needed.
Caveat desi gner.

The JPEG i brary provides support for reading and witing any conbi nation of
tabl es-only datastreans and abbreviated i mages. |In both conpression and
deconpressi on objects, a quantization or Huffman table will be retained for
the lifetime of the object, unless it is overwitten by a new table definition

To create abbreviated i mage datastreans, it is only necessary to tell the
conpressor not to emt sone or all of the tables it is using. Each

quanti zation and Huf fman tabl e struct contains a boolean field "sent_table",
which normally is initialized to FALSE. For each table used by the image, the
header-witing process emts the table and sets sent_table = TRUE unless it is
already TRUE. (In normal usage, this prevents outputting the sane table
definition multiple tines, as would otherwi se occur because the chroma
conmponents typically share tables.) Thus, setting this field to TRUE before
calling jpeg_start_conpress() will prevent the table frombeing witten at

all.

If you want to create a "pure" abbreviated image file containing no tables,
just call "jpeg_suppress_tables(&cinfo, TRUE)" after constructing all the
tables. If you want to emt sonme but not all tables, you'll need to set the
i ndi vidual sent_table fields directly.

To create an abbrevi ated i mage, you nust also call jpeg_start_conpress()
with a second paraneter of FALSE, not TRUE. O herw se jpeg_start_conpress()
will force all the sent_table fields to FALSE. (This is a safety feature to
prevent abbreviated i mages from being created accidentally.)

To create a tables-only file, performthe sanme paranmeter setup that you
normal |y woul d, but instead of calling jpeg_start_conpress() and so on, cal
jpeg wite_ tables(&info). This will wite an abbrevi ated dat astream
containing only SO, DQT and/or DHT markers, and EO. Al the quantization
and Huf frman tables that are currently defined in the conpression object wll
be emitted unless their sent_tables flag is already TRUE, and then all the
sent _tables flags will be set TRUE

A sure-fire way to create matching tables-only and abbreviated i mage files
is to proceed as foll ows:

create JPEG conpression object

set JPEG paraneters

set destination to tables-only file
jpeg_wite_tabl es(&cinfo);

set destination to image file

j peg_start_conpress(&ci nfo, FALSE)
wite data..

j peg_fini sh_conpress(&cinfo);

Since the JPEG paraneters are not altered between witing the table file and
the abbreviated image file, the sane tables are sure to be used. O course,
you can repeat the jpeg_start_conpress() ... jpeg_finish_conpress() sequence
many tines to produce many abbreviated inmage files matching the table file.

You cannot suppress output of the conputed Huf fman tabl es when Huf f man
optim zation is selected. (If you could, there'd be no way to decode the
image...) Cenerally, you don't want to set optim ze_codi ng = TRUE when
you are trying to produce abbreviated files.

In sone cases you mght want to conpress an inage using tables which are

not stored in the application, but are defined in an interchange or

tabl es-only file readable by the application. This can be done by setting up
a JPEG deconpression object to read the specification file, then copying the
tables into your conpression object. See jpeg _copy_critical_paraneters()

for an exanpl e of copying quantization tables.

To read abbreviated image files, you sinply need to |l oad the proper tables
into the deconpressi on object before trying to read the abbreviated i mage.
If the proper tables are stored in the application program you can just

allocate the table structs and fill in their contents directly. NMore conmonly
you'd want to read the tables froma tables-only file. The jpeg_read_header()
call is sufficient to read a tables-only file. You nust pass a second

paranmeter of FALSE to indicate that you do not require an imge to be present.
Thus, the typical scenario is

create JPEG deconpressi on object

set source to tables-only file

j peg_read_header (&ci nfo, FALSE)

set source to abbreviated inage file
j peg_read_header (&ci nfo, TRUE)

set deconpression paraneters

j peg_start_deconpress(&cinfo);

read data...

j peg_fini sh_deconpress(&ci nfo);

In sone cases, you may want to read a file w thout know ng whether it contains
an image or just tables. |In that case, pass FALSE and check the return val ue
fromjpeg_read_header(): it will be JPEG HEADER X if an i nage was found

JPEG HEADER TABLES ONLY if only tables were found. (A third return val ue
JPEG _SUSPENDED, is possible when using a suspendi ng data source manager.)

Note that jpeg read_header() will not conplain if you read an abbrevi at ed

i mage for which you haven't | oaded the nmissing tables; the mssing-table check
occurs later, in jpeg _start_deconpress().

It is possible to read a series of images froma single source file by
repeating the jpeg_read_header() ... jpeg_finish deconpress() sequence

wi t hout rel easing/recreating the JPEG object or the data source nodul e

(I'f you did reinitialize, any partial bufferload left in the data source
buffer at the end of one i mage woul d be di scarded, causing you to |ose the
start of the next inage.) Wen you use this nethod, stored tables are
automatically carried forward, so some of the inmages can be abbrevi ated inmages
that depend on tables fromearlier inmages.

If you intend to wite a series of imges into a single destination file,
you m ght want to nmake a specialized data destination nodul e that doesn't
flush the output buffer at termdestination() tine. This would speed things
up by some trifling amount. O course, you' d need to renmenber to flush the
buffer after the last inage. You can nmake the | ater inages be abbreviated
ones by passing FALSE to jpeg_start_conpress().

Speci al markers

Sonme applications may need to insert or extract special data in the JPEG
datastream The JPEG standard provi des marker types "COM (conment) and
"APPO" t hrough "APP15" (application) to hold application-specific data.
Unfortunately, the use of these markers is not specified by the standard.

COM nmarkers are fairly widely used to hold user-supplied text. The JFIF file
format spec uses APPO markers with specified initial strings to hold certain
data. Adobe applications use APP14 markers beginning with the string "Adobe"
for m scellaneous data. Oher APPn markers are rarely seen, but m ght
contai n al nost anyt hi ng.

If you wish to store user-supplied text, we recomend you use COM narkers
and pl ace readable 7-bit ASCIlI text in them New ine conventions are not
standardi zed --- expect to find LF (Unix style), CR/'LF (DOS style), or CR
(Mac style). A robust COMreader should be able to cope wi th random bi nary
gar bage, including nulls, since some applications generate COM markers
cont ai ni ng non-ASCI | junk. (But yours should not be one of them)

For program supplied data, use an APPn nmarker, and be sure to begin it with an
identifying string so that you can tell whether the marker is actually yours.
It's probably best to avoid using APPO or APP14 for any private markers.

(NOTE: the upcom ng SPI FF standard will use APP8 narkers; we reconmend you

not use APP8 markers for any private purposes, either.)

Keep in mnd that at nmost 65533 bytes can be put into one marker, but you
can have as many narkers as you like.

By default, the 1JG conpression library will wite a JFIF APPO marker if the
sel ected JPEG col orspace is grayscale or YCbCr, or an Adobe APP14 nmarker if
the sel ected col orspace is REB, CMyK, or YCCK. You can disable this, but

we don't reconmmend it. The deconpression library will recognize JFIF and
Adobe markers and will set the JPEG col orspace properly when one is found.

You can wite special markers imediately followi ng the datastream header by
calling jpeg_wite_marker() after jpeg_start_conpress() and before the first
call to jpeg_wite_scanlines(). Wuen you do this, the markers appear after
the SO and the JFIF APPO and Adobe APP14 markers (if witten), but before
all else. Specify the marker type paraneter as "JPEG COM' for COM or

"JPEG APPO + n" for APPn. (Actually, jpeg wite marker will let you wite
any marker type, but we don't recommend witing any ot her kinds of marker.)
For exanple, to wite a user conment string pointed to by conment _text:

jpeg_wite_marker(cinfo, JPEG COM comrent _text, strlen(comrent_text));
O if you prefer to synthesize the marker byte sequence yourself, you can
just cramit straight into the data destination nodul e.

For deconpression, you can supply your own routine to process COM or APPn
markers by calling jpeg_set_narker_processor(). Usually you'd call this
after creating a deconpression object and before calling jpeg_read_header(),
because the markers of interest will normally be scanned by jpeg_read_header
Once you' ve supplied a routine, it will be used for the life of that
deconpressi on object. A separate routine may be registered for COM and for
each APPn narker code.

A marker processor routine must have the signature

bool ean j peg_marker _parser_nethod (j_deconpress_ptr cinfo)
Al t hough the nmarker code is not explicitly passed, the routine can find it
in cinfo->unread_marker. At the time of call, the marker proper has been
read fromthe data source nodule. The processor routine is responsible for
readi ng the marker length word and the renai ni ng paraneter bytes, if any.
Return TRUE to indicate success. (FALSE should be returned only if you are
using a suspending data source and it tells you to suspend. See the standard
mar ker processors in jdmarker.c for appropriate coding nethods if you need to
use a suspendi ng data source.)

If you override the default APPO or APP14 processors, it is up to you to
recogni ze JFIF and Adobe markers if you want col orspace recognition to occur
properly. W reconmend copying and extendi ng the default processors if you
want to do that.

A sinpl e exanple of an external COM processor can be found in djpeg.c

Raw (downsanpl ed) i mage data

Sonme applications need to supply already-downsanpl ed i rage data to the JPEG
conpressor, or to receive raw downsanpl ed data fromthe deconpressor. The
library supports this requirement by allowi ng the application to wite or
read raw data, bypassing the normal preprocessing or postprocessing steps.
The interface is different fromthe standard one and is somewhat harder to
use. If your interest is nerely in bypassing color conversion, we reconmend
that you use the standard interface and sinply set jpeg_col or_space =

i n_col or_space (or jpeg_color_space = out_col or_space for deconpression).
The mechani sm described in this section is necessary only to supply or
recei ve downsanpl ed i mage data, in which not all conponents have the sanme

di nensi ons.

To conpress raw data, you nust supply the data in the col orspace to be used
inthe JPEG file (please read the earlier section on Special col or spaces)
and downsanpled to the sanpling factors specified in the JPEG paraneters.
You must supply the data in the format used internally by the JPEG |library,
nanely a JSAMPI MAGE array. This is an array of pointers to two-dinmensiona
arrays, each of type JSAMPARRAY. Each 2-D array holds the val ues for one
col or conmponent. This structure is necessary since the conponents are of

different sizes. |If the inmage dinensions are not a multiple of the MCU si ze,
you rmust al so pad the data correctly (usually, this is done by replicating
the Iast colum and/or row). The data nmust be padded to a multiple of a DCT
bl ock in each component: that is, each downsanpled row nmust contain a
multiple of 8 valid sanples, and there nust be a nultiple of 8 sanple rows
for each conponent. (For applications such as conversion of digital TV

i mages, the standard inmage size is usually a multiple of the DCT bl ock size,
so that no paddi ng need actually be done.)

The procedure for conpression of raw data is basically the sane as nor mal
conpressi on, except that you call jpeg wite_raw data() in place of
jpeg_wite_scanlines(). Before calling jpeg_start_conpress(), you nust do
the foll ow ng:
* Set cinfo->raw data_in to TRUE. (It is set FALSE by jpeg_set_defaults().)
This notifies the library that you will be supplying raw dat a.
* Ensure jpeg_color_space is correct --- an explicit jpeg_set_col orspace()
call is a good idea. Note that since color conversion is bypassed,
i n_color_space is ignored, except that jpeg_set _defaults() uses it to
choose the default jpeg_col or_space setting.
* Ensure the sanmpling factors, cinfo->conp_info[i].h_sanp_factor and
ci nfo->conp_info[i].v_sanp _factor, are correct. Since these indicate the
di mensi ons of the data you are supplying, it's wise to set them
explicitly, rather than assunmng the library's defaults are what you want.

To pass raw data to the library, call jpeg wite_raw data() in place of
jpeg_wite_scanlines(). The two routines work simlarly except that
jpeg_wite raw data takes a JSAMPI MAGE data array rather than JSAMPARRAY.
The scanlines count passed to and returned fromjpeg wite raw data is
measured in terns of the conponent with the | argest v_sanp_factor

jpeg_wite_raw data() processes one MCU row per call, which is to say
v_sanp_factor*DCTSI ZE sanpl e rows of each conponent. The passed num.|ines
val ue nmust be at |east max_v_sanp_factor*DCTSI ZE, and the return value wll
be exactly that amount (or possibly sone nultiple of that anount, in future
library versions). This is true even on the last call at the bottom of the
i mage; don't forget to pad your data as necessary.

The required dinmensions of the supplied data can be conputed for each
conponent as

ci nfo->conp_info[i].w dth_i n_bl ocks*DCTSI ZE sanpl es per row

ci nfo->conp_info[i].height _in_blocks*DCTSI ZE rows in i nmage
after jpeg_start_conpress() has initialized those fields. |If the valid data
is smaller than this, it nust be padded appropriately. For sone sanpling
factors and i mage sizes, additional dummy DCT bl ocks are inserted to nmake
the image a multiple of the MCU dinensions. The library creates such dunmy
bl ocks itself; it does not read them from your supplied data. Therefore you
need never pad by nore than DCTSI ZE sanples. An exanple nmay hel p here.
Assunme 2h2v downsanpling of YCbCr data, that is

ci nfo->conp_i nfo[0]. h_sanp_factor = 2 for Y
ci nfo->conp_info[0].v_sanp_factor = 2
ci nfo->conp_info[1].h_sanp_factor =1 for Cb
ci nfo->conp_info[1l].v_sanp_factor =1
ci nfo->conp_info[2].h_sanp_factor =1 for O
ci nfo->conp_info[2].v_sanp_factor =1

and suppose that the nom nal inage dinmensions (cinfo->i mage_w dth and
ci nf o- >i mage_hei ght) are 101x101 pi xels. Then jpeg_start_conpress() wll
conput e downsanpl ed_w dth = 101 and width_in_blocks = 13 for Y,

downsanpl ed_wi dth = 51 and width_in_blocks = 7 for Cb and O (and the sane
for the height fields). You nust pad the Y data to at |east 13*8 = 104
colums and rows, the Cb/Cr data to at least 7*8 = 56 colums and rows. The
MCU height is max_v_sanp_factor = 2 DCT rows so you nust pass at |east 16
scanlines on each call to jpeg wite_ raw data(), which is to say 16 actua
sanple rows of Y and 8 each of Cb and Cr. A total of 7 MCU rows are needed,
SO you must pass a total of 7*16 = 112 "scanlines". The |last DCT bl ock row
of Y data is dunmy, so it doesn't matter what you pass for it in the data
arrays, but the scanlines count nmust total up to 112 so that all of the Cb
and Cr data gets passed.

Qut put suspension is supported with raw data conpression: if the data
destinati on nodul e suspends, jpeg_ wite_raw data() will return O.
In this case the same data rows must be passed again on the next call

Deconpression with raw data output inplies bypassing all postprocessing:

you cannot ask for rescaling or color quantization, for instance. Mre
seriously, you nmust deal with the color space and sanpling factors present in
the incoming file. |If your application only handl es, say, 2hlv YCbCr data,
you must check for and fail on other col or spaces or other sanpling factors.
The library will not convert to a different col or space for you.

To obtain raw data output, set cinfo->raw data_out = TRUE before
jpeg_start_deconpress() (it is set FALSE by jpeg read _header()). Be sure to
verify that the col or space and sanpling factors are ones you can handl e.
Then call jpeg_read_raw data() in place of jpeg read _scanlines(). The
deconpressi on process is otherwi se the same as usual

jpeg_read_raw data() returns one MCU row per call, and thus you nust pass a
buf fer of at |east max_v_sanp_factor*DCTSI ZE scanlines (scanline counting is
the sane as for rawdata conpression). The buffer you pass nmust be | arge
enough to hold the actual data plus padding to DCT-bl ock boundaries. As with
conpression, any entirely dunmy DCT bl ocks are not processed so you need not
al l ocate space for them but the total scanline count includes them The
above exanpl e of conputing buffer dinmensions for raw data conpression is
equal ly valid for deconpression

I nput suspension is supported with raw data deconpression: if the data source
nmodul e suspends, jpeg_read_raw data() will return 0. You can al so use
buf f ered-i nage node to read raw data in multiple passes.

Real |y raw data: DCT coefficients

It is possible to read or wite the contents of a JPEG file as raw DCT
coefficients. This facility is mainly intended for use in | ossless
transcodi ng between different JPEG file formats. O her possible applications
i ncl ude | ossl ess cropping of a JPEG inmage, |ossless reassenbly of a
multi-strip or nulti-tile TIFF/JPEG file into a single JPEG datastream etc.

To read the contents of a JPEG file as DCT coefficients, open the file and do
j peg_read_header () as usual. But instead of calling jpeg_start_deconpress()
and jpeg _read_scanlines(), call jpeg_read coefficients(). This will read the
entire image into a set of virtual coefficient-block arrays, one array per
conponent. The return value is a pointer to an array of virtual -array

descriptors. Each virtual array can be accessed directly using the JPEG
menory manager's access_virt_barray nethod (see Menory managenent, bel ow,
and al so read structure.doc's discussion of virtual array handling). O,
for sinple transcoding to a different JPEG file format, the array list can
just be handed directly to jpeg wite_coefficients().

VWhen you are done using the virtual arrays, call jpeg_finish_deconpress()
to release the array storage and return the deconpression object to an idle
state; or just call jpeg_destroy() if you don't need to reuse the object.

If you use a suspending data source, jpeg_read coefficients() will return
NULL if it is forced to suspend; a non-NULL return val ue indicates successfu
conpletion. You need not test for a NULL return val ue when using a

non- suspendi ng data source.

Each bl ock in the bl ock arrays contains quantized coefficient values in
normal array order (not JPEG zigzag order). The block arrays contain only
DCT bl ocks containing real data; any entirely-dumy bl ocks added to fill out
interleaved MCUs at the right or bottom edges of the imge are di scarded
during reading and are not stored in the block arrays. (The size of each

bl ock array can be determ ned fromthe w dth_in_bl ocks and hei ght _i n_bl ocks
fields of the conponent's conp_info entry.) This is also the data format
expected by jpeg wite _coefficients().

To wite the contents of a JPEG file as DCT coefficients, you nmust provide
the DCT coefficients stored in virtual block arrays. You can either pass
bl ock arrays read froman input JPEG file by jpeg_read_coefficients(), or
allocate virtual arrays fromthe JPEG conpression object and fill them
yourself. In either case, jpeg_wite_coefficients() is substituted for
jpeg_start_conpress() and jpeg wite_scanlines(). Thus the sequence is

* Create conpression object

* Set all conpression paranmeters as necessary

* Request virtual arrays if needed

* jpeg_wite_coefficients()

* jpeg_finish_conpress()

* Destroy or re-use conpression object
jpeg_ wite coefficients() is passed a pointer to an array of virtual block
array descriptors; the nunber of arrays is equal to cinfo.numconponents.

The virtual arrays need only have been requested, not realized, before

jpeg_ wite_coefficients() is called. A side-effect of

jpeg_wite coefficients() is to realize any virtual arrays that have been
requested fromthe conpression object's nmenory manager. Thus, when obtaining
the virtual arrays fromthe conpression object, you should fill the arrays
after calling jpeg wite_coefficients(). The data is actually witten out
when you call jpeg_finish _conpress(); jpeg wite_coefficients() only wites
the file header.

VWhen witing raw DCT coefficients, it is crucial that the JPEG quantization
tabl es and sanpling factors match the way the data was encoded, or the
resulting file will be invalid. For transcoding froman existing JPEG file,
we recomend using jpeg_copy_critical _paraneters(). This routine initializes
all the conmpression paraneters to default values (like jpeg_set_defaults()),
then copies the critical information froma source deconpression object.

The deconpression object should have just been used to read the entire

JPEG input file --- that is, it should be awaiting jpeg_finish_deconpress().

jpeg wite_coefficients() marks all tables stored in the conpression object
as needing to be witten to the output file (thus, it acts like
jpeg_start_conpress(cinfo, TRUE)). This is for safety's sake, to avoid
emtting abbreviated JPEG files by accident. If you really want to emt an
abbreviated JPEG file, call jpeg_suppress_tables(), or set the tables

i ndi vidual sent_table flags, between calling jpeg_wite_coefficients() and
j peg_finish_conpress().

Progress nmonitoring

Sonme applications may need to regain control fromthe JPEG library every so
often. The typical use of this feature is to produce a percent-done bar or
ot her progress display. (For a sinple exanple, see cjpeg.c or djpeg.c.)

Al t hough you do get control back frequently during the data-transferring pass
(the jpeg_read_scanlines or jpeg wite_scanlines |oop), any additional passes
wi Il occur inside jpeg finish_conpress or jpeg _start_deconpress; those
routines may take a long time to execute, and you don't get control back
until they are done.

You can define a progress-nonitor routine which will be called periodically
by the library. No guarantees are nmade about how often this call wll occur
so we don't recomend you use it for nouse tracking or anything like that.
At present, a call will occur once per MCU row, scanline, or sanple row
group, whichever unit is convenient for the current processing node; so the
wi der the inmage, the longer the tine between calls. During the data
transferring pass, only one call occurs per call of jpeg_read_scanlines or
jpeg_wite_scanlines, so don't pass a | arge nunber of scanlines at once if
you want fine resolution in the progress count. (If you really need to use
t he cal | back mechanismfor tine-critical tasks |ike nmouse tracking, you could
insert additional calls inside sone of the library's inner |oops.)

To establish a progress-nonitor callback, create a struct jpeg_progress_ngr,
fill inits progress_nonitor field with a pointer to your call back routine,
and set cinfo->progress to point to the struct. The callback will be called
whenever cinfo->progress is non-NULL. (This pointer is set to NULL by

j peg_create_conpress or jpeg_create_deconpress; the library will not change
it thereafter. So if you allocate dynanic storage for the progress struct,
make sure it will live as long as the JPEG object does. Allocating fromthe
JPEG nmenory manager with lifetime JPOOL_PERMANENT will work nicely.) You
can use the sane call back routine for both conpression and deconpressi on

The j peg_progress_ngr struct contains four fields which are set by the library:

| ong pass_counter; /* work units conpleted in this pass */
long pass_limt; /* total nunmber of work units in this pass */
i nt conpl et ed_passes; /* passes conpleted so far */

int total passes; /* total nunmber of passes expected */
Duri ng any one pass, pass_counter increases fromO up to (not including)
pass_|imt; the step size is usually but not necessarily 1. The pass_limt
val ue may change from one pass to another. The expected total nunber of
passes is in total passes, and the nunber of passes already conpleted is in
conpl et ed_passes. Thus the fraction of work conpleted may be estimted as
conpl et ed_passes + (pass_counter/pass_limt)
t ot al _passes
ignoring the fact that the passes may not be equal anmpbunts of work.

VWhen deconpressing, pass_limt can even change within a pass, because it
depends on the nunber of scans in the JPEG file, which isn't always known in
advance. The conputed fraction-of-work-done may junp suddenly (if the library
di scovers it has overestimated the nunber of scans) or even decrease (in the
opposite case). It is not wise to put great faith in the work estinate.

VWhen using the deconpressor's buffered-i nage node, the progress nonitor work
estimate is likely to be conpletely unhel pful, because the |library has no way
to know how many out put passes will be demanded of it. Currently, the library
sets total _passes based on the assunption that there will be one nore out put
pass if the input file end hasn't yet been read (jpeg_i nput_conplete() isn't
TRUE), but no nore output passes if the file end has been reached when the
output pass is started. This neans that total _passes will rise as additiona
out put passes are requested. |If you have a way of determ ning the input file
size, estimating progress based on the fraction of the file that's been read
wi Il probably be nore useful than using the library's val ue.

Menory managenent

This section covers sone key facts about the JPEG library's built-in nenory
manager. For nore info, please read structure.doc's section about the menory
manager, and consult the source code if necessary.

Al menory and tenporary file allocation within the library is done via the
menory manager. |If necessary, you can replace the "back end" of the nmenory
manager to control allocation yourself (for exanmple, if you don't want the
library to use malloc() and free() for sone reason).

Sone data is allocated "permanently” and will not be freed until the JPEG
object is destroyed. Mst data is allocated "per inmage" and is freed by
j peg_finish_conpress, jpeg_finish_deconpress, or jpeg abort. You can call the
menory manager yourself to allocate structures that will automatically be
freed at these tinmes. Typical code for this is

ptr = (*cinfo->nem >alloc_small) ((j_comon_ptr) cinfo, JPOOL_I MAGE, size);
Use JPOOL_PERMANENT to get storage that lasts as long as the JPEG object.
Use alloc_large instead of alloc_small for anything bigger than a few Kbytes.
There are also alloc_sarray and alloc_barray routines that automatically
build 2-D sanple or bl ock arrays.

The library's mni mum space requirenents to process an i nage depend on the

i mage's width, but not on its height, because the library ordinarily works
with "strip" buffers that are as wide as the inmage but just a few rows high
Sonme operating nodes (eg, two-pass color quantization) require full-inmge
buffers. Such buffers are treated as "virtual arrays”: only the current strip
need be in menory, and the rest can be swapped out to a tenporary file.

If you use the sinplest nenory manager back end (jnmemobs.c), then no
tenporary files are used; virtual arrays are sinply malloc()'d. |nages bigger
than menory can be processed only if your system supports virtual nenory.

The ot her nmenory manager back ends support tenporary files of various flavors
and thus work in nmachines without virtual nmenmory. They may al so be useful on
Uni x machines if you need to process images that exceed avail abl e swap space.

VWhen using tenporary files, the library will nmake the in-nmenory buffers for

its virtual arrays just big enough to stay within a "maxi num menory" setting.
Your application can set this [imt by setting cinfo->rem >max_nmenory_t o_use
after creating the JPEG object. (O course, there is still a mnimmsize for
the buffers, so the max-nenory setting is effective only if it is bigger than
t he m ni mum space needed.) |If you allocate any large structures yourself, you
must allocate them before jpeg_start_conpress() or jpeg_start_deconpress() in
order to have them counted against the max nenmory limt. Also keep in mnd
that space allocated with alloc_small() is ignored, on the assunption that
it's too small to be worth worrying about; so a reasonable safety margin
shoul d be left when setting max_nenory_to_use.

If you use the jnemane.c or jnmendos.c nenory manager back end, it is

i mportant to clean up the JPEG object properly to ensure that the tenporary
files get deleted. (This is especially crucial with jnmendos.c, where the
"tenporary files" may be extended-nmenory segnents; if they are not freed,
DOS will require a reboot to recover the nenory.) Thus, with these nmenory
managers, it's a good idea to provide a signal handler that will trap any
early exit fromyour program The handl er should call either jpeg_abort()
or jpeg_destroy() for any active JPEG objects. A handler is not needed with
j mermobs. ¢, and shoul dn't be necessary with jnmemansi.c or jnemac.c either
since the Clibrary is supposed to take care of deleting files made with

tnpfile().

Li brary conpile-tine options

A nunber of conmpile-time options are avail able by nodifying jnorecfg.h.

The JPEG standard provides for both the baseline 8-bit DCT process and

a 12-bit DCT process. 12-bit lossy JPEGis supported if you define
BITS IN JSAVMPLE as 12 rather than 8. Note that this causes JSAMPLE to be

| arger than a char, so it affects the surrounding application's inage data.
The sanpl e applications cjpeg and dj peg can support 12-bit node only for PPM
and G F file formats; you mnmust disable the other file formats to conpile a
12-bit cjpeg or djpeg. (install.doc has nore information about that.)

At present, a 12-bit library can handle *only* 12-bit inages, not both
precisions. (If you need to include both 8- and 12-bit libraries in a single
application, you could probably do it by defining NEED SHORT EXTERNAL_ NAMES
for just one of the copies. You' d have to access the 8-bit and 12-bit copies
fromseparate application source files. This is untested ... if you try it,
we'd like to hear whether it works!)

Note that a 12-bit library always conpresses in Huffnman optim zati on node
in order to generate valid Huffman tables. This is necessary because our
default Huffnman tables only cover 8-bit data. |If you need to output 12-bit
files in one pass, you'll have to supply suitable default Huffman tables.

The maxi mum nunber of conponents (color channels) in the inage is determ ned
by MAX_COVPONENTS. The JPEG standard allows up to 255 conponents, but we
expect that few applications will need nore than four or so.

On machines with unusual data type sizes, you nay be able to inprove
performance or reduce nenory space by tweaking the various typedefs in
jmorecfg.h. In particular, on sone RISC CPUs, access to arrays of "short"s
is quite slow, consider trading nmenory for speed by nmaking JCCEF, |NT16, and
U NT16 be "int" or "unsigned int". UNI8 is also a candidate to becone int.

You probably don't want to nake JSAMPLE be int unless you have |ots of nenory
to burn.

You can reduce the size of the library by conpiling out various optiona
functions. To do this, undefine xxx_SUPPORTED synbol s as necessary.

Portability considerations

The JPEG |ibrary has been witten to be extrenely portable; the sanple
applications cjpeg and djpeg are slightly less so. This section sunmarizes
the design goals in this area. (If you encounter any bugs that cause the
library to be less portable than is clainmed here, we'd appreciate hearing
about them)

The code works fine on both ANSI and pre-ANSI C conpilers, using any of the
popul ar systeminclude file setups, and some not-so-popul ar ones too. See
install.doc for configuration procedures.

The code is not dependent on the exact sizes of the C data types. As
di stributed, we nmake the assunptions that

char is at least 8 bits w de

short is at least 16 bits w de

i nt is at least 16 bits w de

long is at least 32 bits w de
(These are the m nimumrequirenments of the ANSI C standard.) Wder types will
wor k fine, although nmenmory may be used inefficiently if char is much |arger
than 8 bits or short is nuch bigger than 16 bits. The code shoul d work
equally well with 16- or 32-bit ints.

In a system where these assunptions are not net, you may be able to nake the
code work by nodifying the typedefs in jnorecfg.h. However, you will probably
have difficulty if int is less than 16 bits w de, since references to plain

i nt abound in the code.

char can be either signed or unsigned, although the code runs faster if an
unsi gned char type is available. |If char is wider than 8 bits, you will need
to redefine JOCTET and/or provide custom data source/destinati on managers so
that JOCTET represents exactly 8 bits of data on external storage.

The JPEG i brary proper does not assune ASCI| representation of characters.
But sonme of the image file 1/O nodules in cjpeg/djpeg do have ASCI
dependencies in fil e-header mani pul ation; so does cjpeg's select_file_type()
routine.

The JPEG library does not rely heavily on the Clibrary. 1In particular, C
stdio is used only by the data source/destinati on nodul es and the error

handl er, all of which are application-replaceable. (cjpeg/djpeg are nore
heavi | y dependent on stdio.) malloc and free are called only fromthe nmenory
manager "back end" nodul e, so you can use a different nenory all ocator by
repl acing that one file.

The code generally assunmes that C names nust be unique in the first 15
characters. However, global function nanes can be nmade unique in the
first 6 characters by defining NEED SHORT_ EXTERNAL_NANMES.

More info about porting the code may be gl eaned by reading jconfig. doc,
jmorecfg.h, and jinclude. h.

Notes for NM5-DOS inpl ementors

The 1JG code is designed to work efficiently in 80x86 "small" or "nediunt
menory nodels (i.e., data pointers are 16 bits unless explicitly decl ared
"far"; code pointers can be either size). You may be able to use snal

nmodel to conpile cjpeg or djpeg by itself, but you will probably have to use
medi um nodel for any larger application. This won't make much difference in
performance. You *will* take a noticeable performance hit if you use a

| arge-data menory nodel (perhaps 10% 25%, and you shoul d avoid "huge" nodel
if at all possible.

The JPEG library typically needs 2Kb-3Kb of stack space. It will also
mal | oc about 20K-30K of near heap space while executing (and lots of far
heap, but that doesn't count in this calculation). This figure will vary
dependi ng on sel ected operating node, and to a | esser extent on inmage size.
There is al so about 5Kb-6Kb of constant data which will be allocated in the
near data segnent (about 4Kb of this is the error nmessage table).

Thus you have perhaps 20K avail abl e for other npdul es' static data and near
heap space before you need to go to a larger nmenory nodel. The Clibrary's
static data will account for several K of this, but that still |eaves a good
deal for your needs. (If you are tight on space, you could reduce the sizes
of the 1/O buffers allocated by jdatasrc.c and jdatadst.c, say from4K to
1K. Another possibility is to nove the error nessage table to far nenory;
this should be doable with only |ocalized hacking on jerror.c.)

About 2K of the near heap space is "permanent” nenory that will not be
rel eased until you destroy the JPEG object. This is only an issue if you
save a JPEG obj ect between conpression or deconpression operations.

Far data space nmay al so be a tight resource when you are dealing with | arge
i mages. The nobst nenory-intensive case is deconpression w th two-pass col or
guanti zation, or single-pass quantization to an externally supplied color
map. This requires a 128Kb col or | ookup table plus strip buffers anounting
to about 50 bytes per colum for typical sanpling ratios (eg, about 32000
bytes for a 640-pi xel -wi de inmage). You nmay not be able to process wide
images if you have large data structures of your own.

O course, all of these concerns vanish if you use a 32-bit flat-nmenory-node
conpil er, such as DIGPP or Watcom C. W highly recommend flat nodel if you
can use it; the JPEG library is significantly faster in flat nodel.

----- end |ibjpeg.txt inclusion -----
----- begin structure.txt inclusion -----

| JG JPEG LI BRARY: SYSTEM ARCHI TECTURE
Copyright (C 1991-1995, Thomas G Lane.

This file is part of the Independent JPEG G oup's software.
For conditions of distribution and use, see the acconpanyi ng READVE file.

This file provides an overview of the architecture of the |1JG JPEG software;

that is, the functions of the various nodules in the systemand the interfaces
bet ween nodul es. For nore precise details about any data structure or calling
convention, see the include files and comments in the source code.

We assune that the reader is already sonewhat famliar with the JPEG standard.
The README file includes references for |earning about JPEG The file

i bj peg. doc describes the library fromthe viewpoint of an application
programer using the library; it's best to read that file before this one.

Al so, the file coderul es.doc describes the coding style conventions we use.

In this docunment, JPEG specific term nology follows the JPEG standard:
"conponent™ neans a col or channel, e.g., Red or Lum nance.
"sanple" is a single component value (i.e., one nunber in the image data).
"coefficient"” is a frequency coefficient (a DCT transform output nunber).
"bl ock” is an 8x8 group of sanples or coefficients.
An "MCU' (m nimmum coded unit) is an interleaved set of bl ocks of size
determ ned by the sanpling factors, or a single block in a
noni nterl eaved scan
W& do not use the terns "pixel" and "sanple" interchangeably. Wen we say
pi xel , we nean an el enment of the full-size inmage, while a sanple is an el enent
of the downsanpled i mage. Thus the nunber of sanples may vary across
conmponents while the nunber of pixels does not. (This termnology is not used
rigorously throughout the code, but it is used in places where confusion would
otherw se result.)

>r>>>

*** System features ***

The 1JG distribution contains two parts:
* A subroutine library for JPEG conpression and deconpressi on
* cj peg/djpeg, two sanple applications that use the library to transform
JFIF JPEG files to and from several other image formats.
cj peg/djpeg are of no great intellectual conplexity: they nmerely add a sinple
command-1ine user interface and I/O routines for several unconpressed inmage
formats. This docunent concentrates on the library itself.

We desire the library to be capable of supporting all JPEG baseline, extended
sequential, and progressive DCT processes. Hierarchical processes are not
support ed.

The library does not support the |ossless (spatial) JPEG process. Lossless
JPEG shares little or no code with ossy JPEG and would normally be used
wi t hout the extensive pre- and post-processing provided by this library.

We feel that |ossless JPEGis better handl ed by a separate library.

Wthin these limts, any set of conpression paraneters allowed by the JPEG
spec shoul d be readabl e for deconpression. (W can be nore restrictive about
what formats we can generate.) Although the system design allows for al

par amet er val ues, sone uncommon settings are not yet inplenmented and may
never be; nonintegral sanpling ratios are the prine exanple. Furthernore,

we treat 8-bit vs. 12-bit data precision as a conpile-time switch, not a
run-time option, because nost machi nes can store 8-bit pixels nuch nore
conmpactly than 12-bit.

For | egal reasons, JPEG arithmetic coding is not currently supported, but
extending the library to include it would be straightforward.

By itself, the library handles only interchange JPEG datastreans --- in
particular the widely used JFIF file format. The library can be used by
surroundi ng code to process interchange or abbrevi ated JPEG dat astreans t hat
are enbedded in nore conplex file formats. (For exanmple, libtiff uses this
library to inplement JPEG conpression within the TIFF file format.)

The library includes a substantial anmount of code that is not covered by the
JPEG standard but is necessary for typical applications of JPEG These
functions preprocess the imge before JPEG conpression or postprocess it after
deconpression. They include col orspace conversion, downsanpling/upsanpling,
and col or quantization. This code can be omtted if not needed.

A wide range of quality vs. speed tradeoffs are possible in JPEG processing,
and even nore so in deconpression postprocessing. The deconpression library
provides multiple inplenentations that cover nost of the useful tradeoffs,
rangi ng fromvery-high-quality down to fast-preview operation. On the
conpressi on side we have generally not provided | ow quality choices, since
conpression is normally less time-critical. It should be understood that the
| owqual ity nodes may not neet the JPEG standard's accuracy requirenents;
nonet hel ess, they are useful for viewers.

*** Portability issues ***

Portability is an essential requirenent for the library. The key portability
i ssues that show up at the level of systemarchitecture are:

1. Menory usage. We want the code to be able to run on PC-class machines

with limted nenory. |mages should therefore be processed sequentially (in
strips), to avoid holding the whole inmage in nenory at once. Wiere a
full-inmage buffer is necessary, we should be able to use either virtual nenory

or temporary files.

2. Near/far pointer distinction. To run efficiently on 80x86 machi nes, the
code should distinguish "small" objects (kept in near data space) from

"l arge" ones (kept in far data space). This is an annoying restriction, but
fortunately it does not inpact code quality for |ess brain-danmaged machi nes,
and the source code clutter turns out to be mnimal wth sufficient use of
poi nter typedefs.

3. Data precision. W assune that "char" is at least 8 bits, "short" and
"int" at least 16, "long" at least 32. The code will work fine with |arger
data sizes, although nmenory may be used inefficiently in sone cases. However,
t he JPEG conpressed datastream nust ultinately appear on external storage as a
sequence of 8-bit bytes if it is to conformto the standard. This may pose a
probl em on machi nes where char is wider than 8 bits. The library represents
conpressed data as an array of values of typedef JOCTET. |If no data type
exactly 8 bits wide is available, customdata source and data destination
nmodul es nmust be witten to unpack and pack the chosen JOCTET datatype into
8-bit external representation

*** System overvi ew ***
The conpressor and deconpressor are each divided into two nmain sections:

t he JPEG conpressor or deconpressor proper, and the preprocessing or
post processi ng functions. The interface between these two sections is the

i mage data that the official JPEG spec regards as its input or output: this
data is in the colorspace to be used for conpression, and it is downsanpl ed
to the sanpling factors to be used. The preprocessing and postprocessing
steps are responsible for converting a normal image representation to or from
this form (Those few applications that want to deal with YCbCr downsanpl ed
data can skip the preprocessing or postprocessing step.)

Looki ng nore cl osely, the conpressor library contains the follow ng main
el enent s:

Pr epr ocessi ng:
* Col or space conversion (e.g., R@GB to YCbCr).
* Edge expansion and downsanpling. Optionally, this step can do sinple
snoothing --- this is often helpful for lowquality source data
JPEG pr oper:
* MCU assenbly, DCT, quantization
* Entropy coding (sequential or progressive, Huffrman or arithnetic).

In addition to these nodul es we need overall control, marker generation

and support code (menory nmanagenment & error handling). There is also a

nmodul e responsi bl e for physically witing the output data --- typically

this is just an interface to fwite(), but sone applications may need to
do something else with the data

The deconpressor library contains the follow ng main elenments:

JPEG pr oper:
* Entropy decodi ng (sequential or progressive, Huffman or arithnetic).
* Dequanti zation, inverse DCT, MCU di sassenbly.
Post pr ocessi ng:
* Upsanpling. Optionally, this step nay be able to do nore genera
rescal ing of the inmage
* Col or space conversion (e.g., YCbhCr to RGB). This step nmay al so
provi de ganma adjustnent [currently it does not].
* (Optional color quantization (e.g., reduction to 256 colors).
* (Optional color precision reduction (e.g., 24-bit to 15-bit color).
[This feature is not currently inplenented.]

W al so need overall control, marker parsing, and a data source nodul e.
The support code (nmenmory managenent & error handling) can be shared with
the conpression half of the library.

There may be several inplenmentations of each of these elenents, particularly
in the deconpressor, where a wide range of speed/quality tradeoffs is very
useful. It nust be understood that sone of the best speedups involve

nmer gi ng adj acent steps in the pipeline. For exanple, upsanpling, color space
conversion, and col or quantization mght all be done at once when using a
lowquality ordered-dither technique. The systemarchitecture is designed to
al I ow such mergi ng where appropri ate.

Note: it is convenient to regard edge expansion (padding to bl ock boundari es)
as a preprocessing/ postprocessing function, even though the JPEG spec includes
it in conpression/deconpression. W do this because downsanpling/ upsanpling
can be sinplified a little if they work on padded data: it's not necessary to
have special cases at the right and bottom edges. Therefore the interface
buffer is always an integral nunber of blocks wi de and high, and we expect

conpressi on preprocessing to pad the source data properly. Padding will occur
only to the next block (8-sanple) boundary. 1In an interleaved-scan situation
addi ti onal dummy bl ocks may be used to fill out MCUs, but the MCU assenbly and
di sassenbly logic will create or discard these blocks internally. (This is
advant ageous for speed reasons, since we avoid DCTing the dummy bl ocks.

It also pernmits a small reduction in file size, because the conpressor can
choose dunmy bl ock contents so as to minimze their size in conpressed form
Finally, it makes the interface buffer specification i ndependent of whether
the file is actually interleaved or not.) Applications that wish to dea
directly with the downsanpl ed data nust provide simlar buffering and paddi ng
for odd-sized imges.

*** Poor man's object-oriented programrng ***

It should be clear by now that we have a | ot of quasi-independent processing
steps, many of which have several possible behaviors. To avoid cluttering the
code with lots of switch statenents, we use a sinple formof object-style
programm ng to separate out the different possibilities.

For exanple, two different col or quantization algorithns could be inplenmented
as two separate nodul es that present the sane external interface; at runtine,
the calling code will access the proper nodule indirectly through an "object”.

We can get the limted features we need while staying within portable C

The basic tool is a function pointer. An "object"” is just a struct

contai ning one or nore function pointer fields, each of which corresponds to
a nmethod nanme in real object-oriented | anguages. During initialization we
fill in the function pointers with references to whichever nodul e we have
determ ned we need to use in this run. Then invocation of the nodule is done
by indirecting through a function pointer; on nost machines this is no nore
expensi ve than a switch statenent, which would be the only other way of
maki ng the required run-tinme choice. The really significant benefit, of
course, i s keeping the source code clean and well structured.

We can al so arrange to have private storage that varies between different

i npl enent ati ons of the same kind of object. W do this by making all the
nodul e- speci fic object structs be separately allocated entities, which wll
be accessed via pointers in the master conpression or deconpression struct.
The "public" fields or nmethods for a given kind of object are specified by
a conmonly known struct. But a nodule's initialization code can allocate
a larger struct that contains the common struct as its first nenber, plus
additional private fields. Wth appropriate pointer casting, the nodule's
i nternal functions can access these private fields. (For a sinple exanple,
see jdatadst.c, which inplenents the external interface specified by struct
j peg_destination_ngr, but adds extra fields.)

(O course this would all be a ot easier if we were using C++, but we are
not yet prepared to assunme that everyone has a C++ conpiler.)

An inportant benefit of this scheme is that it is easy to provide multiple
versions of any nethod, each tuned to a particular case. Wile a |ot of
precal cul ati on m ght be done to select an optimal inplenentation of a nethod,
the cost per invocation is constant. For exanple, the upsanpling step m ght
have a "generic" method, plus one or nore "hardw red" nethods for the nost
popul ar sanpling factors; the hardw red nmet hods woul d be faster because they'd
use straight-line code instead of for-loops. The cost to determ ne which

method to use is paid only once, at startup, and the selection criteria are
hi dden fromthe callers of the nethod.

This plan differs a little bit fromusual object-oriented structures, in that
only one instance of each object class will exist during execution. The
reason for having the class structure is that on different runs we may create
di fferent instances (choose to execute different nodules). You can think of
the term"nmethod"” as denoting the common interface presented by a particul ar
set of interchangeable functions, and "object"” as denoting a group of rel ated
nmet hods, or the total shared interface behavior of a group of nodul es.

*** QOverall control structure ***

W previously mentioned the need for overall control logic in the conpression
and deconpression libraries. In 1JGinplenmentations prior to v5, overal
control was nostly provided by "pipeline control” nodul es, which proved to be
| arge, unwi el dy, and hard to understand. To inprove the situation, the
control |ogic has been subdivided into multiple nmodules. The control nodul es
consi st of:

1. Master control for nodule selection and initialization. This has two
responsibilities:

1A. Startup initialization at the beginning of inmage processing.
The i ndi vi dual processing nmodules to be used in this run are sel ected
and given initialization calls.

1B. Per-pass control. This determ nes how many passes will be perforned
and calls each active processing nodule to configure itself
appropriately at the beginning of each pass. End-of-pass processing,
where necessary, is also invoked fromthe master control nodule.

Met hod selection is partially distributed, in that a particular processing
nmodul e may contai n several possible inplenentations of a particul ar nethod,
which it will select anmong when given its initialization call. The naster
control code need only be concerned with decisions that affect nore than
one nodul e.

2. Data buffering control. A separate control nodul e exists for each
i nter-processing-step data buffer. This nodule is responsible for
i nvoki ng the processing steps that wite or read that data buffer

Each buffer controller sees the world as foll ows:

i nput data => processing step A => buffer => processing step B => output data

------------------ controller ------------------

The controller knows the datafl ow requirements of steps A and B: how nuch data
they want to accept in one chunk and how much they output in one chunk. Its
function is to manage its buffer and call A and B at the proper tines.

A data buffer control nodule may itself be viewed as a processing step by a
hi gher-1evel control nodule; thus the control nodules forma binary tree with
el ementary processing steps at the | eaves of the tree.

The control nodul es are objects. A considerable anmount of flexibility can

be had by replacing inplenmentations of a control nodule. For exanple:

* Merging of adjacent steps in the pipeline is done by replacing a control
modul e and its pair of processing-step nodules with a single processing-
step nodule. (Hence the possible nerges are determ ned by the tree of
control nodul es.)

* | n some processing nodes, a given interstep buffer need only be a "strip"
buffer |arge enough to accommpdate the desired data chunk sizes. |n other
nodes, a full-inmage buffer is needed and several passes are required.

The control nodul e determ nes which kind of buffer is used and nani pul at es
virtual array buffers as needed. One or both processing steps nmay be
unaware of the nulti-pass behavior

In theory, we mght be able to nake all of the data buffer controllers

i nt erchangeabl e and provide just one set of inplenentations for all. In
practice, each one contains considerable special-case processing for its
particular job. The buffer controller concept should be regarded as an
overal |l system structuring principle, not as a conplete description of the
task perforned by any one controller

*** Conpression object structure ***
Here is a sketch of the |ogical structure of the JPEG conpression library:
| -- Col orspace conversion
-- Preprocessing controller --
| -- Downsanpling
| -- Forward DCT, quanti ze

-- Coefficient controller --
| -- Entropy encodi ng

|
|
Main controller --|
|
|

This sketch al so describes the flow of control (subroutine calls) during

typi cal inmage data processing. Each of the conmponents shown in the diagramis
an "object"” which may have several different inplenmentations available. One
or nore source code files contain the actual inplenentation(s) of each object.

The obj ects shown above are:

* Main controller: buffer controller for the subsanpl ed-data buffer, which
hol ds the preprocessed input data. This controller invokes preprocessing to
fill the subsanpl ed-data buffer, and JPEG conpression to enpty it. There is
usual ly no need for a full-inage buffer here; a strip buffer is adequate.

* Preprocessing controller: buffer controller for the downsanpling input data
buffer, which lies between col orspace conversi on and downsanpling. Note
that a unified conversion/downsanpling nmodul e woul d probably replace this
controller entirely.

* Col orspace conversion: converts application imge data into the desired
JPEG col or space; al so changes the data from pi xel -interl eaved | ayout to
separ ate conponent planes. Processes one pixel row at a tinme.

* Downsanpling: perforns reduction of chroma conponents as required.
Optionally may perform pixel -1evel smoothing as well. Processes a "row
group” at a tinme, where a row group is defined as Vmax pi xel rows of each

conponent before downsanpling, and Vk sanple rows afterwards (renenber VK
di ffers across conponents). Some downsanpling or snoothing algorithms may
requi re context rows above and bel ow the current row group; the
preprocessing controller is responsible for supplying these rows via proper
buffering. The downsanpler is responsible for edge expansion at the right
edge (i.e., extending each sanple rowto a nultiple of 8 sanples); but the
preprocessing controller is responsible for vertical edge expansion (i.e.
duplicating the bottom sanple row as needed to nmake a nultiple of 8 rows).

Coefficient controller: buffer controller for the DCT-coefficient data.
This controll er handl es MCU assenbly, including insertion of dumry DCT

bl ocks when needed at the right or bottom edge. Wen perforn ng

Huf f man- code optim zation or emitting a multiscan JPEG file, this
controller is responsible for buffering the full imge. The equival ent of
one fully interleaved MCU row of subsanpled data is processed per call,
even when the JPEG file is noninterleaved.

Forward DCT and quanti zation: Perform DCT, quantize, and emt coefficients.
Works on one or nore DCT blocks at a tine. (Note: the coefficients are now
emtted in normal array order, which the entropy encoder is expected to
convert to zigzag order as necessary. Prior versions of the 1JG code did
the conversion to zigzag order within the quantization step.)

Entropy encoding: Perform Huf fmman or arithmetic entropy coding and emt the
coded data to the data destination nodule. Wrks on one MCU per call

For progressive JPEG the sane DCT blocks are fed to the entropy coder
during each pass, and the coder nust enmit the appropriate subset of
coefficients.

In addition to the above objects, the conpression library includes these
obj ects:

*

Master control: determ nes the nunber of passes required, controls overall
and per-pass initialization of the other nodul es.

Marker witing: generates JPEG markers (except for RSTn, which is emtted
by the entropy encoder when needed).

Dat a destination manager: wites the output JPEG datastreamto its fina
destination (e.g., a file). The destination manager supplied with the
library knows howto wite to a stdio stream for other behaviors, the
surroundi ng application nmay provide its own destinati on manager

Menory manager: allocates and rel eases nenory, controls virtual arrays
(with backing store nmanagenent, where required).

Error handler: perfornms formatting and output of error and trace nessages;
determ nes handling of nonfatal errors. The surroundi ng application may
override some or all of this object's nethods to change error handling.

Progress nmonitor: supports output of "percent-done" progress reports.
Thi s object represents an optional callback to the surrounding application
if wanted, it nust be supplied by the application

The error handl er, destination manager, and progress nonitor objects are
defined as separate objects in order to sinplify application-specific
custom zation of the JPEG library. A surrounding application may override

i ndi vi dual met hods or supply its own all-new inplenmentation of one of these
objects. The object interfaces for these objects are therefore treated as
part of the application interface of the library, whereas the other objects
are internal to the library.

The error handl er and nenory manager are shared by JPEG conpression and
deconpression; the progress nmonitor, if used, may be shared as well.

*** Deconpression object structure ***
Here is a sketch of the logical structure of the JPEG deconpression library:

| -- Entropy decoding
-- Coefficient controller --
| -- Dequantize, Inverse DCT

| -- Upsanpling

- | -- Col orspace conversion
| -- Color quantization
| -- Color precision reduction

|

_ |
Main controller --|
|

|

-- Postprocessing controller -

As before, this diagramal so represents typical control flow The objects
shown are

* Main controller: buffer controller for the subsanpl ed-data buffer, which
hol ds the output of JPEG deconpression proper. This controller's primry
task is to feed the postprocessing procedure. Sone upsanpling al gorithns
may require context rows above and bel ow the current row group; when this
is true, the main controller is responsible for managing its buffer so as
to make context rows available. 1In the current design, the main buffer is
al ways a strip buffer; a full-imge buffer is never required.

* Coefficient controller: buffer controller for the DCT-coefficient data.
This controll er handl es MCU di sassenbly, including deletion of any dunmy
DCT bl ocks at the right or bottomedge. Wen reading a multiscan JPEG
file, this controller is responsible for buffering the full inage.
(Buffering DCT coefficients, rather than sanples, is necessary to support
progressive JPEG) The equivalent of one fully interleaved MCU row of
subsanpl ed data is processed per call, even when the source JPEG file is
noni nt er | eaved.

* Entropy decodi ng: Read coded data fromthe data source nodul e and perform
Huf f man or arithmetic entropy decoding. Wrks on one MCU per call
For progressive JPEG decoding, the coefficient controller supplies the prior
coefficients of each MCU (initially all zeroes), which the entropy decoder
nodi fies in each scan

* Dequantization and inverse DCT: like it says. Note that the coefficients
buf fered by the coefficient controller have NOT been dequantized; we
nmer ge dequanti zation and inverse DCT into a single step for speed reasons.
VWhen scal ed-down out put is asked for, sinplified DCT algorithnms may be used
that emit only 1x1, 2x2, or 4x4 sanples per DCT bl ock, not the full 8x8.
Wrks on one DCT block at a tine.

* Postprocessing controller: buffer controller for the color quantization
i nput buffer, when quantization is in use. (Wthout quantization, this

controller just calls the upsanpler.) For two-pass quantization, this
controller is responsible for buffering the full-imge data.

* Upsanpling: restores chroma conponents to full size. (Muwy support nore
general output rescaling, too. Note that if undersized DCT outputs have
been emtted by the DCT nodul e, this nmodul e nust adjust so that properly
sized outputs are created.) Wrks on one row group at a tinme. This nodule
also calls the color conversion nmodule, so its top level is effectively a
buffer controller for the upsanpling->color conversion buffer. However, in
all but the highest-quality operating nodes, upsanpling and col or
conversion are likely to be nerged into a single step

* Col orspace conversion: convert from JPEG col or space to output col or space,
and change data |ayout from separate conponent planes to pixel-interleaved.
Wbrks on one pixel row at a tinme.

* Col or quantization: reduce the data to col ormapped form using either an
externally specified colormap or an internally generated one. This nodul e
is not used for full-color output. Wrks on one pixel row at a tinme;, my
require two passes to generate a color nmap. Note that the output wll
al ways be a single conponent representing col ormap i ndexes. In the current
design, the output values are JSAVMPLEs, so an 8-bit conpilati on cannot
guantize to nore than 256 colors. This is unlikely to be a problemin
practice.

* Col or reduction: this nodul e handles col or precision reduction, e.g.,
generating 15-bit color (5 bits/primary) from JPEG s 24-bit output.
Not quite clear yet how this should be handled... should we nmerge it with
col orspace conversi on???

Not e t hat sone hi gh-speed operati ng nodes m ght condense the entire
post processi ng sequence to a single nodul e (upsanple, color convert, and
guantize in one step).

In addition to the above objects, the deconpression library includes these
obj ect s:

* Master control: determ nes the nunber of passes required, controls overall
and per-pass initialization of the other nodules. This is subdivided into
i nput and output control: jdinput.c controls only input-side processing,
whil e jdmaster.c handles overall initialization and output-side control

* Mar ker readi ng: decodes JPEG markers (except for RSTn).

* Data source nmanager: supplies the input JPEG datastream The source
manager supplied with the [ibrary knows how to read froma stdio stream
for other behaviors, the surrounding application may provide its own source
nmanager .

* Menory manager: same as for conpression library.

* Error handler: sane as for conpression library.

* Progress nonitor: sane as for conpression library.

As with conpression, the data source nmanager, error handl er, and progress
nmoni tor are candi dates for replacenent by a surrounding application.

*** Deconpression input and out put separation ***

To support efficient incremental display of progressive JPEG files, the
deconpressor is divided into two sections that can run i ndependently:

1. Data input includes nmarker parsing, entropy decoding, and input into the
coefficient controller's DCT coefficient buffer. Note that this
processing is relatively cheap and fast.

2. Data output reads fromthe DCT coefficient buffer and perfornms the |IDCT
and all postprocessing steps.

For a progressive JPEG file, the data input processing is allowed to get
arbitrarily far ahead of the data output processing. (This occurs only
if the application calls jpeg_consunme_input(); otherw se input and out put
run in | ockstep, since the input section is called only when the out put
section needs nore data.) In this way the application can avoid maki ng
extra display passes when data is arriving faster than the di splay pass
can run. Furthernore, it is possible to abort an output pass w thout

| osi ng anything, since the coefficient buffer is read-only as far as the
out put section is concerned. See |ibjpeg.doc for nore detail

A full-inmage coefficient array is only created if the JPEGfile has nultiple
scans (or if the application specifies buffered-inmge node anyway). Wen
readi ng a single-scan file, the coefficient controller normally creates only
a one-MCU buffer, so input and output processing nust run in lockstep in this
case. jpeg_consune_input() is effectively a no-op in this situation

The main inpact of dividing the deconpressor in this fashion is that we mnust
be very careful with shared variables in the cinfo data structure. Each

vari abl e that can change during the course of deconpression nust be
classified as belonging to data i nput or data output, and each section nust

| ook only at its own variables. For exanple, the data output section may not
depend on any of the variables that describe the current scan in the JPEG
file, because these may change as the data input section advances into a new
scan.

The progress nmonitor is (sonewhat arbitrarily) defined to treat input of the
file as one pass when buffered-inage node is not used, and to ignore data

i nput work conpl etely when buffered-image node is used. Note that the
library has no reliable way to predict the nunber of passes when dealing
with a progressive JPEG file, nor can it predict the nunber of output passes
in buffered-i mage node. So the work estimate is inherently bogus anyway.

No conparable division is currently nade in the conpression |library, because
there isn't any real need for it.
*** Data formats ***
Arrays of pixel sanple values use the follow ng data structure
t ypedef somet hi ng JSAMPLE; a pi xel component val ue, 0..MAXJSAMPLE

typedef JSAMPLE *JSAMPROW ptr to a row of sanples
typedef JSAMPROW * JSAMPARRAY; ptr to a list of rows

typedef JSAMPARRAY *JSAMPI MAGE; ptr to a list of col or-conmponent arrays

The basic el ement type JSAMPLE will typically be one of unsigned char

(signed) char, or short. Short will be used if sanples wider than 8 bits are
to be supported (this is a conpile-tine option). O herw se, unsigned char is
used if possible. |If the conpiler only supports signed chars, then it is
necessary to mask off the val ue when reading. Thus, all reads of JSAMPLE

val ues nmust be coded as "CGETJSAMPLE(val ue)", where the nacro will be defined
as "((value) & OxFF)" on signed-char machines and "((int) (value))" el sewhere.

Wth these conventions, JSAMPLE val ues can be assuned to be >= 0. This hel ps
simplify correct rounding during downsanpling, etc. The JPEG standard's
specification that sanple values run from-128..127 is accommodat ed by
subtracting 128 just as the sanple value is copied into the source array for
the DCT step (this will be an array of signed ints). Simlarly, during
deconpression the output of the IDCT step will be inmediately shifted back to
0..255. (NB: different values are required when 12-bit sanples are in use.
The code is witten in terns of MAXISAVPLE and CENTERJSAMPLE, which will be
defined as 255 and 128 respectively in an 8-bit inplenmentation, and as 4095
and 2048 in a 12-bit inplenmentation.)

W& use a pointer per row, rather than a two-dinmensional JSAWPLE array. This

choice costs only a snmall anount of menory and has several benefits:

* Code using the data structure doesn't need to know the allocated w dth of
the rows. This sinplifies edge expansi on/ conpression, since we can work
in an array that's wider than the | ogical picture w dth.

* | ndexi ng doesn't require nultiplication; this is a performance wi n on many
machi nes.

* Arrays with nore than 64K total elenents can be supported even on machi nes
where mall oc() cannot allocate chunks |arger than 64K

* The rows form ng a conmponent array may be allocated at different tines
wi t hout extra copying. This trick allows sone speedups in snoothing steps
that need access to the previous and next rows.

Not e that each col or conponent is stored in a separate array; we don't use the
traditional |ayout in which the conponents of a pixel are stored together

This sinmplifies coding of nodul es that work on each conponent independently,
because they don't need to know how nmany conponents there are. Furthernore,
we can read or wite each conponent to a tenmporary file independently, which

i s hel pful when dealing with noninterl eaved JPEG fil es.

In general, a specific sanple value is accessed by code such as

GETJSAMPLE(i mage[col or conponent][row][col])
where col is neasured fromthe image left edge, but rowis neasured fromthe
first sanple row currently in menory. Either of the first two indexings can
be preconputed by copying the rel evant pointer

Si nce nost inage-processing applications prefer to work on inmages in which

t he conponents of a pixel are stored together, the data passed to or fromthe
surroundi ng application uses the traditional convention: a single pixel is
represented by N consecutive JSAMPLE val ues, and an inmage rowis an array of
(# of color conponents)*(inmage w dth) JSAMPLEs. One or nore rows of data can
be represented by a pointer of type JSAMPARRAY in this schene. This schene is
converted to conponent-w se storage inside the JPEG library. (Applications
that want to skip JPEG preprocessing or postprocessing will have to contend
wi t h conmponent -wi se storage.)

Arrays of DCT-coefficient values use the follow ng data structure:

typedef short JCCEF; a 16-bit signed integer

typedef JCCEF JBLOCK[DCTSI ZE2]; an 8x8 bl ock of coefficients

typedef JBLOCK *JBLOCKROW ptr to one horizontal row of 8x8
bl ocks

t ypedef JBLOCKROW * JBLOCKARRAY; ptr to a list of such rows

t ypedef JBLOCKARRAY *JBLOCKI MAGE; ptr to a list of color conponent
arrays

The underlying type is at least a 16-bit signed integer; while "short" is big
enough on all machines of interest, on sone machines it is preferable to use
"int" for speed reasons, despite the storage cost. Coefficients are grouped
into 8x8 blocks (but we al ways use #defines DCTSI ZE and DCTSI ZE2 rat her than
"8" and "64").

The contents of a coefficient block may be in either "natural" or zigzagged
order, and may be true values or divided by the quantization coefficients,
dependi ng on where the block is in the processing pipeline. In the current
library, coefficient blocks are kept in natural order everywhere; the entropy
codecs zigzag or dezigzag the data as it is witten or read. The bl ocks
contain quantized coefficients everywhere outside the DCT/IDCT subsystens.
(This latter decision may need to be revisited to support variable

guanti zation a la JPEG Part 3.)

Notice that the allocation unit is now a row of 8x8 bl ocks, corresponding to
ei ght rows of sanples. Qherwi se the structure is nuch the sanme as for
sanmpl es, and for the same reasons.

On machi nes where malloc() can't handl e a request bigger than 64Kb, this data
structure limts us to rows of less than 512 JBLOCKs, or a picture width of
4000+ pixels. This seens an acceptable restriction

On 80x86 nmachi nes, the bottom| evel pointer types (JSAVMPROW and JBLOCKROWN
nmust be declared as "far" pointers, but the upper |evels can be "near"
(inplying that the pointer lists are allocated in the DS segnent).

W use a #define synbol FAR which expands to the "far" keyword when

conpi ling on 80x86 machi nes and to not hi ng el sewhere.

*** Suspendabl e processing ***

In sone applications it is desirable to use the JPEG Ilibrary as an

increnental, nmenory-to-nenory filter. 1In this situation the data source or
destination may be a limted-size buffer, and we can't rely on being able to
enpty or refill the buffer at arbitrary tinmes. Instead the application would

like to have control return fromthe library at buffer overflow underrun, and
then resune conpression or deconpression at a later tine.

This scenario is supported for sinple cases. (For anything nore conplex, we
recommend that the application "bite the bullet” and develop real multitasking
capability.) The libjpeg.doc file goes into nore detail about the usage and
l[imtations of this capability; here we address the inplications for library
structure.

The essence of the problemis that the entropy codec (coder or decoder) mnust
be prepared to stop at arbitrary tinmes. In turn, the controllers that cal

the entropy codec nust be able to stop before having produced or consuned al
the data that they normally would handle in one call. That part is reasonably
strai ghtforward: we make the controller call interfaces include "progress
counters” which indicate the nunber of data chunks successfully processed, and
we require callers to test the counter rather than just assune all of the data
was processed.

Rat her than trying to restart at an arbitrary point, the current Huffman
codecs are designed to restart at the beginning of the current MCU after a
suspensi on due to buffer overflow underrun. At the start of each call, the
codec's internal state is | oaded from pernmanent storage (in the JPEG object
structures) into local variables. On successful conpletion of the MU, the
permanent state is updated. (This copying is not very expensive, and may even
lead to *inproved* performance if the local variables can be registerized.)

If a suspension occurs, the codec sinply returns w thout updating the state,
thus effectively reverting to the start of the MCU. Note that this inplies

| eavi ng sone data unprocessed in the source/destination buffer (ie, the
conpressed partial MCU). The data source/destination nodule interfaces are
specified so as to nake this possible. This also inplies that the data buffer
must be | arge enough to hold a worst-case conpressed MCU; a coupl e thousand
byt es shoul d be enough.

In a successive-approxi mati on AC refi nenent scan, the progressive Huf f man
decoder has to be able to undo assignnments of newly nonzero coefficients if it
suspends before the MCU is conplete, since decoding requires distinguishing
previ ousl y-zero and previously-nonzero coefficients. This is a bit tedious
but probably won't have much effect on performance. Oher variants of Huffman
decodi ng need not worry about this, since they will just store the sane val ues
again if forced to repeat the MCU.

Thi s approach woul d probably not work for an arithmetic codec, since its
nodi fiable state is quite large and couldn't be copied cheaply. Instead it
woul d have to suspend and resune exactly at the point of the buffer end.

The JPEG marker reader is designed to cope with suspension at an arbitrary
point. It does so by backing up to the start of the marker paraneter segnent,
so the data buffer nust be big enough to hold the | argest nmarker of interest.
Agai n, a couple KB should be adequate. (A special "skip" convention is used
to bypass COM and APPn markers, so these can be larger than the buffer size

wi t hout causi ng probl ens; otherw se a 64K buffer would be needed in the worst
case.)

The JPEG marker witer currently does *not* cope with suspension. | feel that
this is not necessary; it is nmuch easier sinply to require the application to
ensure there is enough buffer space before starting. (An enpty 2K buffer is
nmore than sufficient for the header nmarkers; and ensuring there are a dozen or
two bytes available before calling jpeg finish _conpress() will suffice for the
trailer.) This would not work for witing nmulti-scan JPEG files, but

we sinply do not intend to support that capability with suspension

*** Menory nmanager services ***

The JPEG library's nenory manager controls allocation and deal |l ocati on of

menory, and it nanages |large "virtual" data arrays on machi nes where the
operating system does not provide virtual nmenory. Note that the same
menory nmanager serves both conpression and deconpressi on operations.

In all cases, allocated objects are tied to a particular conpression or
deconpressi on nmaster record, and they will be rel eased when that master
record i s destroyed.

The menory nanager does not provide explicit deallocation of objects.
I nstead, objects are created in "pools" of free storage, and a whol e poo
can be freed at once. This approach hel ps prevent storage-|eak bugs, and
it speeds up operations whenever nalloc/free are slow (as they often are).
The pools can be regarded as lifetine identifiers for objects. Two
pool s/lifetinmes are defined:

* JPOOL_PERVANENT lasts until master record is destroyed

* JPOCL_I MAGE lasts until done with inage (JPEG datastream
Permanent lifetime is used for paraneters and tables that should be carried
across fromone datastreamto another; this includes all application-visible
paranmeters. Image lifetime is used for everything else. (Athird lifetine,
JPOOL_PASS = one processing pass, was originally planned. However it was
dropped as not being worthwhile. The actual usage patterns are such that the
peak nenory usage woul d be about the sane anyway; and havi ng per-pass storage
substantially conplicates the virtual nmenory allocation rules --- see bel ow)

The menory nanager deals with three kinds of object:

1. "Small" objects. Typically these require no nore than 10K-20K t ot al

2. "Large" objects. These may require tens to hundreds of K depending on
i mage size. Senmantically they behave the sane as small objects, but we
di stingui sh themfor two reasons:

* On Ms-DOS machines, large objects are referenced by FAR pointers,
smal | obj ects by NEAR pointers.
* Pool allocation heuristics may differ for |large and small objects.
Not e that individual "large" objects cannot exceed the size all owed by
type size_t, which nmay be 64K or | ess on sonme machi nes.

3. "Virtual" objects. These are large 2-D arrays of JSAVMPLEs or JBLOCKs
(typically large enough for the entire image bei ng processed). The
menory manager provides stripw se access to these arrays. On nachines
wi thout virtual nenory, the rest of the array may be swapped out to a
tenporary file.

(Not e: JSAMPARRAY and JBLOCKARRAY data structures are a conbination of |arge
objects for the data proper and small objects for the row pointers. For
conveni ence and speed, the nenory nmanager provides single routines to create
these structures. Simlarly, virtual arrays include a small control bl ock
and a JSAMPARRAY or JBLOCKARRAY working buffer, all created with one call.)

In the present inplenentation, virtual arrays are only pernitted to have i mage
lifespan. (Permanent |ifespan would not be reasonable, and pass lifespan is
not very useful since a virtual array's raison d etre is to store data for
mul ti pl e passes through the inmage.) W also expect that only "small" objects
will be given permanent |ifespan, though this restriction is not required by

t he menory nmanager.

In a non-virtual -menory machi ne, some performance benefit can be gai ned by
maki ng the in-nmenory buffers for virtual arrays be as |arge as possible.
(For small images, the buffers might fit entirely in nmenory, so blind
swappi ng woul d be very wasteful.) The nmenory manager wi |l adjust the height

of the buffers to fit within a prespecified maxi num nmenory usage. |n order
to do this in a reasonably optinmal fashion, the nmanager needs to allocate al
of the virtual arrays at once. Therefore, there isn't a one-step allocation
routine for virtual arrays; instead, there is a "request” routine that sinply
al l ocates the control block, and a "realize" routine (called just once) that
determ nes space allocation and creates all of the actual buffers. The
realize routine nmust allow for space occupied by non-virtual |arge objects.
(We don't bother to factor in the space needed for small objects, on the
grounds that it isn't worth the trouble.)

To support all this, we establish the follow ng protocol for doing business
with the menory manager:

1. Modul es nmust request virtual arrays (which may have only inmage |ifespan)
during the initial setup phase, i.e., in their jinit_xxx routines.

2. Al "large" objects (including JSAMPARRAYs and JBLOCKARRAYs) nust al so be
all ocated during initial setup.

3. realize virt_arrays will be called at the conpletion of initial setup
The above conventions ensure that sufficient information is avail able
for it to choose a good size for virtual array buffers.

Smal | objects of any lifespan nay be allocated at any tine. W expect that
the total space used for small objects will be small enough to be negligible
inthe realize_virt_arrays conputation

In a virtual -nenory machine, we sinply pretend that the avail able space is
infinite, thus causing realize virt_arrays to decide that it can allocate al
the virtual arrays as full-size in-nenory buffers. The overhead of the
virtual -array access protocol is very small when no swappi ng occurs.

A virtual array can be specified to be "pre-zeroed"; when this flag is set,
never-yet-witten sections of the array are set to zero before being nade
available to the caller. |If this flag is not set, never-witten sections
of the array contain garbage. (This feature exists primarily because the
equi val ent | ogi c woul d ot herwi se be needed in jdcoefct.c for progressive
JPEG node; we may as well make it avail able for possible other uses.)

The first wite pass on a virtual array is required to occur in top-to-bottom
order; read passes, as well as any wite passes after the first one, may
access the array in any order. This restriction exists partly to sinplify
the virtual array control logic, and partly because sonme file systens may not
support seeking beyond the current end-of-file in a tenporary file. The main
inmplication of this restriction is that rearrangenent of rows (such as
converting top-to-bottomdata order to bottomto-top) nust be handl ed while
readi ng data out of the virtual array, not while putting it in.

*** Menory nmanager internal structure ***

To isol ate system dependenci es as much as possi bl e, we have broken the
menory nmanager into two parts. There is a reasonably systemindependent
"front end" (jnmemmgr.c) and a "back end" that contains only the code
likely to change across systens. All of the nmenory managenent met hods
outlined above are inplenmented by the front end. The back end provides
the following routines for use by the front end (none of these routines
are known to the rest of the JPEG code):

jpeg_nmeminit, jpeg_nemterm system dependent initialization/shutdown

j peg_get _small, jpeg_free_small interface to malloc and free library
routines
(or their equival ents)

j peg_get large, jpeg_free_large interface to FAR mall oc/free in MSDOS
machi nes;

el se usually the sane as

j peg_get _snal |l /jpeg free_snal

j peg_nem avail abl e estimate avail able nmenory
j peg_open_backi ng_store create a backi ng-store object
read_backi ng_store, mani pul at e a backi ng- st ore obj ect

write_backing_store,
cl ose_backi ng_store

On some systens there will be nore than one type of backi ng-store object
(specifically, in M5-DOS a backing store file m ght be an area of extended
menory as well as a disk file). |jpeg_open_backing store is responsible for
choosing how to inplenment a given object. The read/wite/close routines
are nethod pointers in the structure that describes a given object; this
lets thembe different for different object types.

It may be necessary to ensure that backing store objects are explicitly

rel eased upon abnormal programterm nation. For exanple, MS-DOS won't free
extended nenory by itself. To support this, we will expect the main program
or surrounding application to arrange to call self_destruct (typically via

j peg_destroy) upon abnormal termnation. This may require a SIG NT signa
handl er or equivalent. W don't want to have the back end nodule install its
own signal handl er, because that would pre-enpt the surrounding application's
ability to control signal handling.

The 1JG distribution includes several nmenory nanager back end inpl enmentations.
Usual |y the sanme back end should be suitable for all applications on a given
system but it is possible for an application to supply its own back end at
need.

*** |nplications of DNL marker ***

Some JPEG files may use a DNL narker to postpone definition of the inmage

hei ght (this would be useful for a fax-like scanner's output, for instance).
In these files the SOF marker clains the inmage height is 0, and you only
find out the true inage height at the end of the first scan

We could read these files as foll ows:

1. Upon seeing zero i mage height, replace it by 65535 (the maxi mum al | owed).

2. When the DNL is found, update the inage height in the global inmage
descriptor.

This inplies that control nodul es nust avoid naking copies of the inmage

hei ght, and nust re-test for term nation after each MCU row. This would

be easy enough to do.

In cases where inage-size data structures are allocated, this approach wll
result in very inefficient use of virtual nmenory or nuch-Iarger-than-necessary
tenmporary files. This seens acceptable for sonething that probably won't be a

mai nst ream usage. People nmight have to forgo use of menory-hoggi ng options
(such as two-pass col or quantization or noninterleaved JPEG files) if they
want efficient conversion of such files. (One could inprove efficiency by
demandi ng a user-supplied upper bound for the height, |ess than 65536; in nost
cases it could be much less.)

The standard also permits the SOF marker to overestimate the inmage height,
with a DNL to give the true, smaller height at the end of the first scan

This woul d sol ve the space problens if the overestimte wasn't too great.

However, it inplies that you don't even know whether DNL will be used.

This leads to a couple of very serious objections:

1. Testing for a DNL marker nust occur in the inner |oop of the deconpressor's
Huf f man decoder; this inplies a speed penalty whether the feature is used
or not.

2. There is no way to hide the last-nm nute change in inage height froman
application using the decoder. Thus *every* application using the 1JG
library woul d suffer a conplexity penalty whether it cared about DNL or
not .

We currently do not support DNL because of these probl ens.

A different approach is to insist that DNL-using files be preprocessed by a
separate programthat reads ahead to the DNL, then goes back and fixes the SOF
marker. This is a much sinpler solution and is probably far nore efficient.
Even if one wants piped input, buffering the first scan of the JPEG file needs
alot smaller tenp file than is inplied by the maxi num hei ght nethod. For
this approach we'd sinply treat DNL as a no-op in the deconpressor (at nost,
check that it matches the SOF i mage height).

W will not worry about nmaking the conpressor capable of outputting DNL
Sonething simlar to the first schene above could be applied if anyone ever
wants to nmake that work.

