
V M L A B S

MGL 3D Library
Application Programmer’s Interface

Preliminary Specification

Revision 0.80
26-Sep-00

VM Labs, Inc.
520 San Antonio Road
Mountain View, CA 94040
Tel: (650) 917-8050
Fax: (650) 917-8052

Merlin™, Merlin Media Architecture™, and the logo are trademarks of VM Labs, Inc. The information contained in
this document is confidential and proprietary to VM Labs, Inc., and is provided pursuant to a

Non-Disclosure agreement between VM Labs, Inc., and the recipient. It may not be distributed or copied in
any form whatsoever without the express written permission of VM Labs.

VM LABS CONFIDENTIAL PROPRIETARY

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 2

Copyright  1997-2000 VM Labs, Inc. All rights reserved.
Proprietary and Confidential to VM Labs, Inc.

The information in this document is preliminary and subject to change at any time. VM Labs
reserves the right to make changes to any information described in this document.

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 3

1. OVERVIEW
This document describes how to get started with mGL: OpenGL™ for the Merlin Architecture. Since
mGL is a partial implementation of the established OpenGL™ 1.1 standard, we are only concerned
here with showing how to initialize mGL and enumerating the implemented OpenGL™ 1.1 API calls.
For an excellent tutorial and reference for OpenGL™, check out the following books:

The OpenGL™ Programming Guide, Second Edition by Mason Woo, Jackie Neider, and Tom Davis.

The OpenGL™ Reference Manual, Second Edition by Renate Kempf and Chris Frazier.

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 4

2. INITIALIZATION
While our intent is to provide a useful fraction of the OpenGL™ 1.1 API, initialization and functions like
buffer swapping are always platform-specific. Accordingly, mGL is built on top of mml2D, the Merlin
2D API. To initialize mGL, one must first allocate 2 or more screen-size pixmaps in SDRAM with the
following definitions and calls to the mml2D API.

#include <nuon/gl.h> // OpenGL API header file
#include <nuon/mml2d.h> // mml2D
#define PIXEL_TYPE e655Z // 16 bit YCB plus 16 bit Z
#define PIXEL_FILTER eNoVideoFilter // Video filter
#define SCRN_WIDTH 360 // Display width
#define SCRN_HEIGHT 240 // Display height
#define NUM_BUFFERS 2 // 2 for double-buffering, 3 for triple
#define NUM_MPES 0 // Number of MPEs to dedicate to mGL rendering;

// the special value zero indicates that as many as
// possible should be used

mmlGC mgc; // Merlin 2D graphics context
mmlSysResources sysRes; // System resource management structure
mmlDisplayPixmap screen[NUM_BUFFERS]; // Onscreen pixmap buffers

// Initialize 2D API
mmlPowerUpGraphics(&sysRes);
mmlInitGC(&mgc, &sysRes);
mmlInitDisplayPixmaps(screen, &sysRes, SCRN_WIDTH, SCRN_HEIGHT,
 (mmlPixFormat)PIXEL_TYPE, NUM_BUFFERS, NULL);

Once, mml2D is enabled, one then initializes mGL on top of it via the following steps:

// mGL Initialization
mglInit(screen, PIXEL_FILTER, NUM_BUFFERS, NUM_MPES);

At this point, mGL is ready to process OpenGL™ 1.1 API calls.

Swapping display buffers is a two step process. First, one calls mglSwapBuffers()which signals the
video ISR to swap display buffers during the next vertical blank. At this point, one can run any
application code that does not need to wait for the next vertical blank such as game logic or controller
input processing. When such code is complete, one must now call mglVideoSync() to wait for the
video ISR if it has not yet occurred or return immediately if it has happened.

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 5

3. MGL API
Platform-specific functionality for mGL is handled through a series of API calls prefixed with "mgl".
These calls are documented below.

GLint mglInit(mmlDisplayPixmap *screen, GLint pixelFilter, GLint numBuffers, GLint numMPEs);

Initializes the mGL API as described above where screen is a pointer to a list of numBuffers SDRAM-
resident pixmaps, pixelFilter is the mml2D pixel filter, numBuffers is the number of display buffers, and
numMPEs is the number of MPEs to dedicate to mGL rendering. The special value zero indicates that
as many as possible should be used. Since one MPE runs the application and the high-level mGL, this
number is one less than the number of MPEs in the system. MglInit returns 0 for success or -1 for
failure.

GLint mglEnd(void)

Shuts down the mGL API. Returns 0 for success and –1 for failure.

GLint mglSwapBuffers(void)

Instructs the video interrupt service routine (ISR) to swap display buffers during the next vertical blank.
This function does NOT wait for vertical blank! Returns 1 for success, 0 for failure

GLint mglVideoSync(void)

Waits for the next video ISR and then returns. This is used in conjunction with mglSwapBuffers so
that one can start processing data for the next video frame upon calling mglSwapBuffers and the call
mglVideoSync when such processing cannot proceed until a video ISR has transpired.

mmlDisplayPixmap *mglGetBuffer(GLint buffer)

Allows the user to get a pointer to an mGL display buffer. This routine takes the same arguments as
the OpenGL™ call glDrawBuffer, which is currently limited to GL_FRONT and GL_BACK. This
routine is of use to the programmer wishing to mix in-house rendering code with mGL such as a voxel
engine or a ray tracer.

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 6

mmlColor mglColorFromRGB(GLuint r, GLuint g, GLuint b)
mmlColor mglColor16FromRGB(GLuint r, GLuint g, GLuint b)

Returns a 32 bit YCB color given an input of red green and blue components each ranging from 0 to
255.

The following calls are used to manage textures, as the standard OpenGLTM interfaces have yet to be
implemented.
The function

GLTexture *mglNewTexture(GLuint width, GLuint height, GLuint pixelType, GLuint sdramFlag)

allocates but does not initialize memory for a texture of the stated dimensions and pixel type. The
dimensions must be powers of two. Accepted pixel types are eClut4, eClut8, e655, e888Alpha,
eClut4GRB888Alpha, eClut8GRB888Alpha, eGRB655 and eGRB888Alpha. If sdramFlag is nonzero,
then SDRAM is allocated; otherwise, system RAM is allocated. If successful, a pointer to an mGL
texture object is returned; otherwise, NULL is returned. The pbuffer field of the GLTexture structure
points to the allocated texel buffer. When applicable, the clut field points to the palette, which always
has pixel type e655Alpha.

The function

GLTexture *mglInitJPEGTexture(JOCTET *jpeg_start, GLuint jpeg_size,
 GLuint pixelType, GLint scale, GLuint sdramFlag)

creates a texture from a JPEG image of size jpeg_size bytes beginning at jpeg_start. The parameter
scale causes the image to be scaled by a factor of 1 / scale. Accepted scale values are 1, 2, 4 and 8.
Accepted pixel types are e888Alpha, e655 and eGRB655. The parameter sdramFlag is as described
above. If successful, a pointer to an mGL texture object is returned; otherwise, NULL is returned.
The function

GLTexture *mglInitBMPTexture(void *bp, GLuint convertToYCrCb, GLuint sdramFlag)

creates a texture from a BMP image beginning at bp. If convertToYCrCb is nonzero, then the palette is
converted from RGB to YCrCb. The parameter sdramFlag is as described above. If successful, a
pointer to an mGL texture object is returned; otherwise, NULL is returned.

To set the current texture, call

void mglSetTexture(GLTexture *tp)

To delete a texture, call

void mglDeleteTexture(GLTexture *tp)

An application can temporarily take control of one or more rendering MPEs using

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 7

void mglInvalidateMPE(int commBusId)
void mglInvalidateAllMPEs(void)

The parameter commBusId is the comm. bus ID of an MPE. Attempting to invalidate an MPE not
allocated by mGL has no effect. The MPE(s) may be reclaimed by mGL sometime during the next
glBegin/glEnd block, glFlush, glFinish, or mglDrawBuffer call.

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 8

4. FIXED POINT EXTENSIONS
MGL is designed around the usage of fixed point rather than floating point math. Platform-specific
extensions have been provided to take advantage of this. Their use can greatly accelerate immediate
mode rendering. The following OpenGLTM API calls expect fixed point rather than floating point
parameters where fixed(n) indicates a fixed point number with n fractional bits:

glVertex3fp(fixed(10), fixed(10), fixed(10))

glVertex3fpv(Glint *v) where v points to a 3 element array of fixed(10)

glTexCoord1fp(fixed(18), fixed(18))

glTexCoord1fpv(Glint *v) where v points to a 1 element array of fixed(18)

glTexCoord2fp(fixed(18), fixed(18))

glTexCoord2fpv(Glint *v) where v points to a 2 element array of fixed(18)

glLoadMatrixfpExt(Glint *m) where m points to a 16 element array of fixed(14)

glMultMatrixfpExt(Glint *m) where m points to a 16 element array of fixed(14)

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 9

5. RENDERING EXTENSIONS
Currently, there is only one platform-specific rendering extension: chroma key texturing. The
designation “chroma key” is in fact an historical accident, because when “chroma key” is enabled, the
current implementation accepts or rejects any fragment for which alpha is not 255. It is therefore like a
fixed-function OpenGL alpha test.
“Chroma key” texturing can be activated by the call glEnable(GL_CHROMAKEY_EXT). Currently,
mGL supports chroma key in the following cases:
 paletted texture, chroma key
 paletted texture, chroma key, bilerp
 paletted texture, chroma key, intensity lighting
 paletted texture, chroma key, bilerp, intensity lighting
Non-paletted “chroma key” textures are not supported at present. Applications will typically create
“chroma key” textures using mglNewTexture.

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 10

6. IMPLEMENTED OPENGL™ 1.1 API CALLS
At this time, 41 out of 74 intended OpenGL™ 1.1 API calls are implemented. Here is a list.

glBegin(GL_TRIANGLES)
glClear
glClearColor
glClearDepth
glColor|34|ifdus| v|
glDepthFunc
glDepthRange
glDisable
glDrawBuffer
glFinish
glFlush
glFrustum
glGet|BooleanDoubleFloatIntegerFixed|v
glGetError
glGetLight|fi|v
glGetMaterial|fi|v
glGetString
glGetTexParameter|fi|v
glEnable
glEnd
glLight|fi| v|
glLightModel|fi| v|
glLoadIdentity
glLoadMatrix|fd|
glMaterial|fi| v|
glMatrixMode
glMultMatrix|fd|
glNormal3|bdfis| v|
glOrtho
glPushMatrix
glPopMatrix
glRotate|fd|
glScale|fd|
glTexCoord|12|fdis| v|
glTexEnv|fi| v|
glTexParameter|fi| v|
glTranslate|fd|
glVertex|23f|fdi|v |
glViewport
gluPerspective
gluProject

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 11

7. PLANNED OPENGL™ 1.1 API CALLS
The following OpenGL™ 1.1 API calls will ultimately be available under mGL. API calls denoted with
an asterisk (*) should be active in the next revision. If we have missed something you need for your
killer app, let us know, we’re flexible, or at the very least, we can help you implement it on your own.

glBindTexture*
glBlendFunc*
glClipPlane
glColorMaterial*
glCopyTexImage|12|D
glCopyTexSubImage|12|D
glCullFace
glDeleteTextures*
glDrawArrays
glDrawElements
glFog|fi| v|*
glGenTextures*
glGetClipPlane
glGetPointerv
glGetTexEnv|fi|v*
glGetTexGen|fdi|v
glGetTexLevelParameter|fi|v
glHint
glInterleavedArrays
glIsEnabled
glPointSize
glPolygonMode
glPolygonOffset
glPolygonStipple
glPopAttrib
glPushAttrib
glPopClientAttrib
glPushClientAttrib
glReadBuffer
glShadeModel*
glTexGen|fdi| v|
glTexImage|12|D*
glTexSubImage|12|D*

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 12

8. UNIMPLEMENTABLE OPENGL™ 1.1 API CALLS
There are several features of OpenGL™ 1.1 which are difficult to implement on the Merlin architecture.
Accordingly, there are no plans to implement the following API calls at this time.

glClearStencil
glColorMask
glDepthMask
glLogicOp
glStencilFunc
glStencilMask
glStencilOp
glTexCoord|34|fdis| v|

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 13

9. IDIOSYNCRASIES
There are some limitations which one encounters unavoidably when dealing exclusively with fixed point
math for polygon rendering. Here is an enumeration of strange things you might observe and how to
work with or around them.

Near z-clipping plane
If one sets the near z-clipping plane to <=1.0, the quantity 1/w, which is used for perspective
interpolation, will encounter an arithmetic overflow. Setting such a close z-clipping plane is usually a
really bad idea on any architecture, so this shouldn't be much trouble. However, if the near z-clipping
planes needs to be closer than 1.01 or so, or it is much greater than 1.0, then the minimum near z-
clipping plane distance can be adjusted. To do so, locate the constant GLMINZSHIFT in glmpe.h and
gl.i. By default, it is set to 37. Increasing this quantity by 1 will divide the minimum z-clipping plane
distance by 2 and decreasing it by 1 will increase inverse multiply it by 2.
So why would one want to change this quantity? Well, the dynamic range of 1/w where the quantity is
guaranteed to possess 16 bits or more of precision ranges from the minimum z-clipping plane distance
to 65536.0 times this distance. One bit of precision is lost for every factor of 2 beyond this point. This
effect should probably never show up under normal circumstances. However, you are now prepared to
deal with the situation if it does. The default fixed point math settings of mGL provide a dynamic range
of + or – 1,048,576 for all coordinates with 10 bits of fractional precision. Hopefully, this is sufficient for
most applications. If the units here corresponded to feet, this would translate to an operational range
of + or - 200 miles in each coordinate with a maximum resolution of 1/100 of an inch.

Big Polygons
If one attempts to render a polygon which violates both the near and far z-clipping plane
simultaneously, one might encounter occasional z-buffer errors that result in blank or incorrectly
rendered pixels. This is once again an artifact of fixed point math. In this case, a slight error in fixed
point interpolation has led to an arithmetic overflow either beyond zMax ($7fffffff) or below zMin (0).
The reason for this is that fixed point interpolants are only guaranteed 16 bits of fractional precision
within a 16 bit dynamic range while the polygon in question traverses 32 such orders of magnitude!
Fortunately, there are several workarounds. The obvious solution is not to get in this situation in the
first place. Failing that, one can sacrifice 1% or so of the z-buffer on each end with the following API
call:

glDepthRange(0.01, 0.99)

This will insure that the fixed point roundoff error no longer results in arithmetic overflow.

26-SEP-00 VM LABS CONFIDENTIAL PROPRIETARY 14

Viewport Considerations
Here's a quick reminder that Merlin pixels are NOT square! Rather, they are a 9:8 rectangle. This
means that the x width of a viewing frustum should be scaled by a factor of 1.125 in order to achieve
squares that are truly square.
A second viewport-related issue is that fixed point clipping math is not perfect. While no polygon
cracking should occur, the clipping boundary itself can waver + or - 1 pixel due to truncation and
roundoff errors. This effect can occur on hardware accelerators as well, but a hardware clipping
rectangle is used to conceal it in that case. Since Merlin has no hardware clipping, this effect is
unavoidable. The solution is to a) insure that the viewport boundary is entirely in the overscan region
or b) render something on top of this region and the completion of polygon rendering (another solution
used in several hardware accelerators which lack hardware clipping).

Lighting Considerations
MGL’s lighting model is an approximation of that of OpenGL 1.1:

• Up to 4 positional or directional light sources can be active at any given time.

• Only directional lights are supported.

• Backface material properties are ignored.

• GL_NORMALIZE is not implemented. Normals passed from the application must have unit
length.

Texture Tiling
MGL is currently limited to + or - 32 repetitions of a texture rather than + or - 127 as specified by the
OpenGL™ 1.1 standard. Once again, this is a user-specifiable quantity. To increase the maximum
repetitions by a factor of 2, decrease the quantity GLTEXCOORDSHIFT, in both glmpe.h and gl.i, by1.
Inversely, to decrease the maximum repetitions by 1, increase GLTEXCOORDSHIFT by 1. Why would
one choose to do the latter? Increasing GLTEXCOORDSHIFT by one increases the fractional
precision of texture coordinate interpolation.

Texture Dimensions
This release of mGL only supports 16 bit video and 16 bit YCB, GRB and 4 bit paletted textures. The
maximum size of a 16 bit texture is 1024 pixels whose dimensions are arranged as the products of any
two powers of two (such as 32x32, 16x64, 8x128, and so on). The maximum size of a 4 bit paletted
texture is 4096 pixels whose dimensions are subject to the same constraints as 16 bit textures i.e.
64x64, 128x32, 256x16 and so on.

Texture Environment
Currently, only the GL_REPLACE and GL_MODULATE texture environment modes are supported.

