
VM LABS

PROPRIETARY AND CONFIDENTIAL

VM Labs Makefile Fragments
Version 0.06

Tuesday, May 8, 2001
17:17:33

VM Labs, Inc.
520 San Antonio Rd.
Mountain View, CA 94040
Tel: (650) 917 8050
Fax: (650) 917 8052

VM LABS
Revision Date Who What

0.01 September 20, 2000 Christopher
Heiny

Created document.

0.02 October 5, 2000 Christopher
Heiny

Added OBJDIR, MAKE_VERBOSITY.

0.03 January 15, 2001 Christopher
Heiny

Corrected typos. Updated clean/clobber target
info. Added description of
vml_make_clean.mk. Updated OBJDIR
description.

0.04 January 16, 2001 Lisa Reeber Added description of new definitions in
vml_make.mk

0.05 January 19, 2001 Christopher
Heiny

Added descriptions for SDK_VERSION,
SDK_RELEASE_INFO, no-target and
sdkversion.

January 22, 2001 Christopher
Heiny

Added sample code for using
SDK_RELEASE_INFO.

0.06 February 16, 2001 Christopher
Heiny

Added vml_make_os.mk

CONFIDENTIAL AND PROPRIETARY 2
FOR VM LABS INTERNAL USE ONLY

Copyright © 2000, 2001 VM Labs, Inc., All rights reserved.

Confidential and Proprietary Information of VM Labs, Inc.

These materials may be used or reproduced solely under an express written license from VM Labs, Inc.

Merlin™, Merlin Media Architecture™, and the logo are trademarks of VM Labs, Inc. The information contained in
this document is confidential and proprietary to VM Labs, Inc., and is provided pursuant to a non-disclosure agreement
between VM Labs, Inc., and the recipient. It may not be distributed or copied in any form whatsoever without the express
written permission of VM Labs.

The information in this document is preliminary and subject to change at any time. VM Labs reserves the right to make
changes to any information described in this document.

VM LABS

Table of Contents
1-Introduction...4

1.1-Background...4
1.2-Notation Conventions...4
1.3-Terminology..4
1.4-URLS..5
1.5-Support..5

2-Using the Makefile Fragments..6
2.1-Platforms supported..6
2.2-vml_make.mk...6

2.2.1-General macro definitions...6
2.2.2-Useful tools and shell commands..7
2.2.3-Macros for standard make tools..7
2.2.4-Other macros...8

2.3-vml_make_targets.mk...8
2.3.1-Compilation Flags and Options...8

2.3.1.1-Default Flags...9
2.3.1.2-Local Flags..10
2.3.1.3-VM Labs Flags..10
2.3.1.4-Include Paths...10

2.3.2-Object File Redirection with OBJDIR..10
2.3.3-Libraries..11

2.3.3.1-Specifying libraries..11
2.3.3.2-Library search paths...11

2.3.4-Build commands..12
2.3.4.1-Building a .cof...12
2.3.4.2-Building a .a...12

2.3.5-Targets...12
2.3.5.1-clean...13

2.3.5.1.1-Extending the clean target..13
2.3.5.1.2-Overriding the clean target entirely...14

2.3.5.2-clobber...14
2.3.5.3-no-target...14
2.3.5.4-sdkversion..14

2.3.6-Controlling Verbosity..14

CONFIDENTIAL AND PROPRIETARY 3
FOR VM LABS INTERNAL USE ONLY

VM LABS

1- Introduction
The VM Labs Makefile fragments provide templates for uniform setting of make macros
and targets across the various software projects within VM Labs. They are also used in
the SDK code samples, in order to reduce the problems that can occur when transporting
makefiles into strange environments.
At this time, the VM Labs Makefile fragments are under development. Although the
targets, macros and other behaviors they define are reasonably stable as released, they will
change in the future. Every effort will be made to ensure compatibility with previous
versions, but this may not always be possible.

1.1- Background
The reader of this document is assumed to be familiar with software development
concepts in general, including a reasonable familiarity with software development (in
particular the writing and use of makefiles) under either the Windows or Linux
environment.

Two useful references that you may wish to have are:
� Managing Projects with make, Andrew Oram and Steve Talbot, O'Reilly &

Associates, Inc. 1993 edition.
� Gnu Make, A Program For Directing Recompilation, Richard M. Stallman and

Roland McGrath, Free Software Foundation, Inc. 1995 edition 0.43 for gmake
3.73 beta.

The second of these documents is included in the VM Labs SDK in doc/gmake.pdf.

1.2- Notation Conventions
The following font conventions are used in this document:

Font Used for
Times New Roman Main body text.
Courier New Filenames, URLs, e-mail addresses, and so on.
Lucida C, C++, Llama and shell source code examples.
Courier New;
Courier New Bold

prompts and printouts; user input

italics
italics
italics

Placeholders for user supplied values.

1.3- Terminology
In the most recent editions of the gmake documentation, the traditional terminology of
"dependency" has been replaced by "prerequisite". We have attempted to update this
document to conform with the new nomenclature, but may not have caught all
occurrences.
On the other hand, traditional VM Labs practice refers the files containing a description

CONFIDENTIAL AND PROPRIETARY 4
FOR VM LABS INTERNAL USE ONLY

VM LABS
of the prerequisites for a given file as "dependency" files, and assigns the extension .d to
them. The nomenclature is retained.

1.4- URLS
When referencing a website, the URL name is given in the text as a hyperlink. Since it's
difficult to hyperlink from printed text, though, each URL is expanded as a footnote.

1.5- Support
To report problems with the makefile fragments or this document, or to suggest changes,
enhancements, or improvements, please contact the VM Labs SDK support team at:
sdk-release@vmlabs.com.

CONFIDENTIAL AND PROPRIETARY 5
FOR VM LABS INTERNAL USE ONLY

VM LABS

2- Using the Makefile Fragments
There are two parts to the VM Labs Makefile fragments.

� vml_make.mk – this file should go at the start of your Makefile, preferably
before any other macros or includes

� vml_make_targets.mk – this file should go at the end of your Makefile,
preferably after all other macros, includes and targets.

Both of these files are found in the $(VMLABS)/util/ directory.1 They are intended for
use with Gnu make version 3.79.1 and higher. This version of gmake is included in the
current SDK release.
An additional fragment, vml_make_os.mk, is included by vml_make.mk. Another
additional fragment, vml_make_clean.mk, is included automatically by
vml_make_targets.mk. It is provided separately because the operations they implement
are also useful outside the context of their parent files. See the section on the related
parent makefile fragment for more details on each of these.

2.1- Platforms supported
The VM Labs Makefile fragments are officially supported on the following OS'es:

� Linux
� Windows 98 with the MKS toolkit
� Windows NT 4.0, service pack 4 or higher
� Windows 2000

All Windows installations require the presence of the VM Labs SDK. Windows ME is
not supported. Windows 98 is not supported without the MKS toolkit.
The fragments have been tested on the following distributions of Linux:

� RedHat 6.2
� RedHat 7.0
� Suse 7.0

2.2- vml_make.mk

vml_make.mk is intended to be included at the start of your Makefile. It defines tools,
switches, and utilities that may be used in all supported environments, as described in the
preceding section.

2.2.1- General macro definitions
vml_make.mk defines the following general macro definitions. These include:

1 A previous release of the SDK, 0.81Beta, included copies of these files in the $(VMLABS)/include directory as
well. These copies have been removed – if you are upgrading from SDK 0.81Beta, you will probably want to
check your existing references and correct them as needed.

CONFIDENTIAL AND PROPRIETARY 6
FOR VM LABS INTERNAL USE ONLY

VM LABS
Macro Definition
BUILDHOST Specifies the platform on which make/gmake has

been invoked. Possible values are:
LINUX All flavors of Linux.
WIN98 Windows 98
WINNT Windows NT 4.0, Windows 2000

Note that if you want just the BUILDHOST definition, you may include the file
vml_make_os.mk.

2.2.2- Useful tools and shell commands
The following definitions are provided by vml_make.mk

definition purpose
MKDIR shell command to create a directory
RMDIR shell command to remove a directory

RM shell command to remove files
RMEX shell command to remove a directory
SEP filename separator
ISEP filename separator
CLS shell command to clear the terminal screen
CP shell command to copy files and directories
MV shell command to move files and directories

ECHO shell command that writes arguments to the
standard output.

AWK programming language used to manipulate text
files

SED stream editor used to manipulate text files
WAITKEY waits for the user to press return before

continuing
Additional shell commands will be added with future revisions.

2.2.3- Macros for standard make tools
The following definitions are provided for standard make tools.

Definition Defined as Purpose
AS llama Program for doing assembly.
CC mgcc Program for compiling C programs.
AR vmar Archive-maintaining program.
LD vmld Linker program (when not using $(CC)).

CONFIDENTIAL AND PROPRIETARY 7
FOR VM LABS INTERNAL USE ONLY

VM LABS
Additional tools (for example, for C++ compilation) will be added in future revisions.

2.2.4- Other macros
Two additional macros are defined to provide information about the VM Labs SDK that
you are using.

definition purpose
SDK_VERSION The current SDK version number. For

example:0.85, or 1.12.02.
SDK_RELEASE_INFO A short descriptive string for the current SDK

release, including other information in addition
to the version number. For example:

VMLabs SDK 0.86 (Game Developer)

The exact format of the SDK_RELEASE_INFO string may change in the future. However, it
is likely to have spaces, parentheses, and other problematic characters in it. To pass this
into a C program and have it appear as a string (such as "VMLabs SDK 0.86") to the
compiler, you will need to do some rather strange quotes in your make file. For example,

-DFOO= "\"$(SDK_RELEASE_INFO)\""

For your convenience, there is pair of predefined macros, QUOTED_VERSION and
QUOTED_RELEASE_INFO that you can use. Adding these to the LOCAL_CFLAGS definition
will cause SDK_VERSION and SDK_RELEASE_INFO, respectively, to be defined as quoted
strings to the C preprocessor.

2.3- vml_make_targets.mk

vml_make_targets.mk is intended to go at the end of your Makefile. It defines
compilation rules for a variety of file types, default compilation flags for the standard
tools, and several commonly used targets.

Rules are defined for the following actions:
� make a .o file from a .c or .cc file, using the C compiler
� make a .o file from a .cpp file, using the C++ compiler
� make a .o file from a .s file, using the assembler
� make a .d file from a .c or .s file

These rules support dependency file and object file redirection using the OBJDIR macro.
See below for more details.

Additionally, procedures are defined for making .cof and .a files (see below).
Finally, the following targets are provided:

� clean – for removing output files;
� clobber – for stomping your directory into oblivion.

These targets are described in greater detail below.

2.3.1- Compilation Flags and Options
vml_make_targets.mk recognizes three kinds of flags for its build rules:

CONFIDENTIAL AND PROPRIETARY 8
FOR VM LABS INTERNAL USE ONLY

VM LABS
� Local Flags
� VM Labs Flags
� Default Flags

The flags appear on the command line in this order: Local Flags, VM Labs Flags, and
finally Default Flags.
Additionally, vml_make_targets.mk recognizes two include paths:

� Local include path
� VM Labs include path

These definitions appear on the command line in this order: Local include path first,
followed by VM Labs include path. This is important in processing include files and
library archives.
The overall ordering of flags on the command line is:

1. Local flags
2. Local include path
3. VM Labs flags

4. VM Labs include path
5. Default Flags

2.3.1.1- Default Flags
Compilation rules are provided for C, C++, and Llama assembler. Standard flags for
compilation are defined by the following macros:

Macro Use default
ARFLAGS Flags for building

archives.
crs

ASFLAGS Flags for the Llama
assembler.

-nologo -fcoff -c

CFLAGS Flags for the C
compiler.

-Wall

CPPFLAGS Flags for the C
preprocessor, used by
both C and C++
compilation.

none

CXXFLAGS Flags for the C++
compiler.

-Wall

LDFLAGS Flags for linking, used
by $(LD) and $(CC).

-mrom -mpe3

You can override these flags by defining your own settings for them in your Makefile. If
vml_make_targets.mk detects that you have done this, it will not attempt to define these
flags. If you wish to specify flags in addition to the defaults, instead of replacing them,
you are encouraged to use the LOCAL_whateverFLAGS, as described below.

CONFIDENTIAL AND PROPRIETARY 9
FOR VM LABS INTERNAL USE ONLY

VM LABS
2.3.1.2- Local Flags

You can specify additional flags by using the LOCAL_whateverFLAGS macro for that
particular tool. vml_make_targets understands the following local flags.

Local flags Use
LOCAL_ARFLAGS Local flags for building archives.
LOCAL_ASFLAGS Local flags for the Llama assembler.
LOCAL_CFLAGS Local flags for the C compiler.

LOCAL_CPPFLAGS Local flags for the C preprocessor, used by
both C and C++ compilation.

LOCAL_CXXFLAGS Local flags for the C++ compiler.
LOCAL_LDFLAGS Local flags for linking.

2.3.1.3- VM Labs Flags
VM Labs Flags are not implemented at this time.

2.3.1.4- Include Paths
As mentioned above, vml_make_targets.mk recognizes both a local and VM Labs
include path.
VM Labs include path macro is VML_INCLUDE_PATH, and is defined as

-I$(VMLABS)/include

If the VMLABS_LOCAL macro is defined in your makefile or environment, the VM Labs
include path have that prepended to it:

-I$(VMLABS_LOCAL)/include -I$(VMLABS)/include

This is extremely useful if you are preparing local versions of SDK components. If you
install your version of the component in $(VMLABS_LOCAL)/include, it will be used in
preference to the version in the SDK.
It is highly recommended that you structure your build environment to take advantage of
this.
The local include path macro, LOCAL_INCLUDE_PATH, is available for you to specify
include directories other than those specified by the VM Labs include path. It is highly
recommended that you use this macro rather than redefining VML_INCLUDE_PATH. Since
LOCAL_INCLUDE_PATH precedes VML_INCLUDE_PATH on the command lines, any
directories it specifies will be searched before the VM Labs include directories.

2.3.2- Object File Redirection with OBJDIROBJDIROBJDIROBJDIR

If you define the OBJDIR macro, the .o files will be placed in the directory specified by
OBJDIR. If this macro is not defined, the .o files will be placed in the working directory.
Note that OBJDIR must NOT contain a trailing directory separator. For example:

Valid Invalid
OBJDIR = C:/proj/foo/obj OBJDIR = C:/proj/foo/obj/

CONFIDENTIAL AND PROPRIETARY 10
FOR VM LABS INTERNAL USE ONLY

VM LABS
Valid Invalid

OBJDIR = ./product-19/obj OBJDIR = ./product-19/obj/

OBJDIR = ~/my_objs OBJDIR = ~/my_objs/

Dependency files (.d files) will be redirected in the same manner as the .o files.
If OBJDIR is present, it will be checked for object and dependency files when evaluating
dependencies.

The clean target will look in OBJDIR for the following file extensions:
� .a
� .cof
� .d
� .dll
� .exe
� .lib
� .o
� .obj

when trying to determine which files to clean from a directory.

If OBJDIR is not defined, it defaults to your current working directory (that is, ./).

2.3.3- Libraries
Libraries used in linking have a set of macro definitions parallel to those used in
compilation. These macros are used by the makecof procedure (see below)

2.3.3.1- Specifying libraries
vml_make_targets.mk recognizes both local and default library macros for linking.
These macros are LOCAL_LIBS and LDLIBS, respectively.
Use the LOCAL_LIBS macro to define any libraries you want to be included in your coff
file.
Currently, no default libraries are are defined, since many existing makefiles use the
LDLIBS macro to define libraries for linking. You are encouraged to convert existing
makefiles and to author new makefiles to use LOCAL_LIBS.

2.3.3.2- Library search paths
vml_make_targets.mk recognizes both a local and VM Labs library path.
VM Labs library path macro is VML_LIB_PATH, and is defined as

-L$(VMLABS)/lib

If the VMLABS_LOCAL macro is defined in your makefile or environment, the VM Labs
library path have that prepended to it:

-L$(VMLABS_LOCAL)/lib -L$(VMLABS)/lib

This is extremely useful if you are preparing local versions of SDK components. If you
install your version of the component in $(VMLABS_LOCAL)/lib, it will be used in
preference to the version in the SDK. It is highly recommended that you structure your
build environment to take advantage of this.
The local library path macro, LOCAL_LIB_PATH, is available for you to specify include
library directories other than those specified by the VM Labs library path. It is highly

CONFIDENTIAL AND PROPRIETARY 11
FOR VM LABS INTERNAL USE ONLY

VM LABS
recommended that you use this macro rather than redfining VML_LIB_PATH or using the
LDLIBS macro. Since LOCAL_LIB_PATH precedes VML_LIB_PATH and LDLIBS on the
command lines, any directories it specifies will be searched before the VM Labs include
directories.

2.3.4- Build commands
The following commands are provided for building .cof files and .a files.
They are provided as commands, because they don't neatly fit into the gmake's idea of
pattern based rules. To use these commands, insert one of the following rules in your
makefile.

2.3.4.1- Building a .cof
The makecof procedure is used for building .cof files. It's invoked like this:

coffname: file file file file...
$(makecof)

For example
room.cof: $(OBJS)

$(makecof)

The exact action performed by makecof is to build the specified coff file from the list of
files it depends on, using the following command:

$(CC) $(LOCAL_LDFLAGS) $(LOCAL_LIB_PATH) $(VML_LIB_PATH)
$(LDFLAGS) $^ $(LOCAL_LIBS) $(LDLIBS) -o $@

2.3.4.2- Building a .a
The makelib procedure is used for building .a files. It's invoked like this:

libname: file file file file...
$(makelib)

For example
libcut.a: snip.o hack.o chop.o scissors.o chainsaw.o nailtrimmer.o

$(makelib)

The exact action performed by makelib is to make an archive file from the list of files it
depends on, using the following command

$(AR) $(LOCAL_ARFLAGS) $(ARFLAGS) $@ $^

2.3.5- Targets
vml_make_targets.mk provides the following targets:

� clean

� clobber

� no-target

� sdkversion

Despite the fire hazard2, vml_make_targets will do a recursive make for the clean and
clobber targets by invoking

2 See Peter Miller's paper Recursive Make Considered Harmful, available at
http://www.canb.auug.org.au/~millerp/rmch/recu-make-cons-harm.html

CONFIDENTIAL AND PROPRIETARY 12
FOR VM LABS INTERNAL USE ONLY

VM LABS
gmake clean

or
gmake clobber

for each subdirectory defined in the COMPONENTS macro. If you don't want to use
recursive make in this fashion, do not define the COMPONENTS macro.

If you want to just include these two targets themselves, include the vml_make_clean.mk

makefile fragment. Note that it is NOT necessary to do this if you have already include
vml_make_targets.mk.
The no-target target exists to catch make file configuration errors. In particular, it prints a
warning if you have failed to define any targets in your make file.

sdkversion prints information about the version of the VM Labs SDK that you're using.

2.3.5.1- clean
Clean will remove all the .o, .a, .cof, .exe, and .dll files from the current directory. It
will also invoke gmake clean on all the subdirectories listed in COMPONENTS (see above).

You can override clean's actions for a given filetype by setting one or more of the
following macros

Macro Overrides cleaning for
CLEAN_LIBS .a and .lib (library) files
CLEAN_COFS .cof files
CLEAN_EXEs Windows executables
CLEAN_OBJS .o and .obj files
CLEAN_DLLS Windows .dll files.
CLEAN_DEPS .d dependency files.

For example, to specify that only libglarp.a should be cleaned, you would use the line
CLEAN_LIBS = libglarp.a

in your makefile. Specifying an empty value for one of these macros means that clean
will not attempt to delete that kind of file at all. For example, including the line

CLEAN_DLLS =

in your makefile would preserve any .dll files in that directory.

Note that these definitions are NOT passed into the COMPONENTS subdirectories when
they are cleaned.

2.3.5.1.1- Extending the cleancleancleanclean target
You can specify additonal files for cleaning using the LOCAL_CLEAN_FILES macro. For
example, to specify that clean should also delete .log files and .ps files, you would use
the following line:

LOCAL_CLEAN_FILES = *.log *.ps

in your makefile.
If you have additional actions that you wish to be performed when clean is invoked, you
can define your own local clean target, which will be executed before the main body of

CONFIDENTIAL AND PROPRIETARY 13
FOR VM LABS INTERNAL USE ONLY

VM LABS
the clean target is executed. You specify the name of this target using the LOCAL_CLEAN

macro. For example, to delete a temporary picture data directory, you would use the
following commands:

LOCAL_CLEAN = removetemp

removetemp:
$(RMDIR) $(MY_WORK)/jpegs/out $(MY_WORK)/gifs/out

2.3.5.1.2- Overriding the cleancleancleanclean target entirely
You can prevent the clean target from being defined by vml_make_targets.mk by
including the following definition in your makefile:

NO_DEFAULT_CLEAN = yes

In this case, you are expected to define your own clean target.

2.3.5.2- clobber
Invoking the clobber target will delete the entire contents of the directory from which
clobber is invoked, including all subdirectories, and then it will delete the directory itself.
If you don't realize that you should use caution when invoking gmake clobber, you
probably should be in some safer occupation, like the turnip census.

2.3.5.3- no-target
The no-target target is a utility target that is invoked if you (for some reason) didn't
define any targets in your make file. All it does is print the message

You have failed to define any targets in your makefile.

and exit with status -1.

2.3.5.4- sdkversion
The sdkversion target is a utility target that will tell you a little bit about the SDK you
are currently using. Typing gmake sdkversion will return the message

info: VMLabs SDK 0.84
version: 0.84

and exit with status 0. Note that these are the values of the SDK_RELEASE_INFO and
SDK_VERSION macros, respectively

2.3.6- Controlling Verbosity
By default, the rules and commands defined in vml_make_targets.mk produce a
verbose output of the commands being executed during construction of the target. You
can quiet or silence this output by setting the MAKE_VERBOSITY macro to an appropriate
value in your makefile. The valid options for MAKE_VERBOSITY are quiet, which produces
a simple action/filename summary for each command executed, and silent, which
produces almost no output at all.

MAKE_VERBOSITYMAKE_VERBOSITYMAKE_VERBOSITYMAKE_VERBOSITY Level of detail
undefined Default: detailed output of commands

executed.
CONFIDENTIAL AND PROPRIETARY 14
FOR VM LABS INTERNAL USE ONLY

VM LABS
MAKE_VERBOSITYMAKE_VERBOSITYMAKE_VERBOSITYMAKE_VERBOSITY Level of detail

quiet Summary output of commands executed.
silent Almost no output at all.

The summary output of quiet consists of an action/filename pair of the form
action – filename

Actions recorded are

Action What's going on
c compiling c module

c++ compiling C++ module
d determining dependencies for

c, C++, and assembler.
lib building a library

link linking a .cof file
s assembling

Examples of the output for each setting are as follows. In each case, gmake was invoked
on a simple project with a single source file.

MAKE_VERBOSITYMAKE_VERBOSITYMAKE_VERBOSITYMAKE_VERBOSITY

undefined C:\proj\biosver>gmake
mgcc -c -IC:\SDK-Local/include -Wall -o biosver.o
biosver.c
mgcc -LC:SDK-Local/lib -LC:SDK-Beta/lib -mrom -mpe3 biosver.o
-o biosver.cof

C:\proj\biosver>

quiet C:\proj\biosver>gmake
c - biosver.o
link - biosver.cof

C:\proj\biosver>

silent C:\proj\biosver>gmake
C:\proj\biosver>

Examples shown were executed in the Windows98 environment – other environments
will appear similar by not identical.
Note for this SDK release the value of MAKE_VERBOSITY is not passed to component
makefiles during recursive makes. This behavior may change with the next SDK release.

CONFIDENTIAL AND PROPRIETARY 15
FOR VM LABS INTERNAL USE ONLY

