VM LABS
M

Merlin 3D Library Functions

Programmers’ Manual

Version 0.4

VM Labs, Inc.

520 San Antonio Rd
Mountain View, CA 94040
Tel: (650) 917 8050

Fax: (650) 917 8052

NUON™ and NUON Media Architecture™ are trademarks of VM Labs, Inc. The information
contained in this document is confidential and proprietary to VM Labs, Inc. and is provided
pursuant to a Non-Disclosure agreement between VM Labs, Inc. and the recipient. It may
not be distributed or copied in any form whatsoever without the prior written permission of

VM Labs.

Copyright notice

Copyright ©1998 VM Labs, Inc.
All Rights Reserved

The information contained in this document is confidential and proprietary to VM
Labs, Inc., and is provided pursuant to a Non-Disclosure agreement between VM
Labs, Inc. and the recipient. It may not be distributed or copied in any form whatso-
ever without the prior written permission of VM Labs.

This is a preliminary specification. VM Labs reserves the right to make
changes to any and all of the interfaces described in this document.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY

VM LABS CONFIDENTIAL PROPRIETARY

6/11/2001

Contents

1 Introduction
1.1 Polygon Rendering Pipeline
1.2 LightingModel
1.3 Texture Maps
1.4 Procedural Textures
15 Shading
1.6 Antialiasing

2 C3DAPI
2.1 ConventionS. . . . v o e e e
22 MatriCes . . . o v v i e
2.2.1 m3dldentityMatrix
2.2.2 m3dEulerMatrix
2.2.3 m3dPlaceMatrix
2.2.4 m3dMatrixMultiply
23 Cameras e
231 m3dinitCamera
2.3.2 m3dSetCameraMatrix
24 Materials
2.4.1 m3dInitMaterialFromColor
2.4.2 ma3dinitMaterialFromPixmap L.
2.4.3 m3dnitMaterialFromJPEG
2.4.4 m3dnitMipMapFromJPEG
2.5 Display Buffers
251 m3dinitBuf
252 m3dFreeBuf
253 m3dSetMaterial
254 m3dStartTriangle
255 m3dEndTriangle
25.6 m3dAddNormal.
2.5.7 m3dAddTextureCoords
2.5.8 m3dAddVertex
2.6 Rendering and General Initialization
26.1 m3dinit
2.6.2 m3dExecuteBuffer
26.3 m3dHint
2.6.4 m3dEndScene
2.7 Usingthe CAPI

3 Low level MPE routines
3.1 Introduction
3.2 Transformations.
3.3 Lighting

WWNNNPRP R

1
1

OO ©WWOWWOWWWWWOWOOWWNNNNOOOOOoOOo”Oo O Uul Ul U

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY

3.4 MPE ViewportsandCameras v v i i it 16

3.5 MPE Polygonand PointFormats 17
3.6 MPE Geometry Functions 18
3.6.1 xformlo 18
3.6.2 xformhi 18
3.7 MPECIipping Functions 18
371 calcclip 18
372 doclip 19
3.8 MPE Perspective Transformation Functions 19
381 PEISP . . . 19
3.8.2 persperet ... 20
3.9 MPE Lighting Functions 20
3.9.1 glight e 21
3.9.2 gslight 22
3.10 MPE Rendering Functions 22
3101 drawpoly ... 22
3.11 Pixel Generating Functions 23
3111 aabilerp 23
3112 bilerppix 23
3113 SPECPIX . .ot i 23
3.12 User Supplied Pixel Generating Functions 23

VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

1. Introduction

PLEASE NOTE: The MML3D library is no longer supported, and is provided as ref-
erence material only for those wishing to implement their own 3D libraries. Other 3D
libraries (such as mGL) are available for NUON and are supported; see the appro-
priate documentation in the NUON SDK.

1.1 Polygon Rendering Pipeline

The standard 3D rendering pipeline is shown in figure 3. The direct mode C API loads
MPEs with appropriate functions to do geometry transformations, clipping, lighting,
and rendering. The pipeline as implemented is fully customizable. User components
may be used to replace any stage of the pipeline. Input to the pipeline may come
from standard API functions that read memory directly (for polygons) or that generate
polygons from patch descriptions. Or, the programmer can write a custom front end
that creates polygons to be drawn by the rest of the pipeline.

Load datafrom memory e

(standard API

Beckiace cul pipeline code)

Convert to interna polygon format

Transform to camera coordinates

[Middle portion
user code)

‘Setup fo polygon draw Back end

(API routines or
user supplied

Do per-pixel lighting and texturing code)

Figure 1: Standard Rendering Pipeline

The functions provided by the APIs are all designed to be used with a Z buffer.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 1

The 3D API does not require that Z buffering be enabled; for example, objects may be
pre-sorted and then be rendered in back to front order without Z buffering. However,
sorting moving objects in 3D is a difficult problem to solve without Z buffering, and
usually results in unpleasant visual artifacts. Moreover, if Z buffering is not used
then at most 1 MPE can be used for rendering pixels (unless some screen space
subdivision algorithm is used).

1.2 Lighting Model

The 3D API allows a number of distinct types of light sources. Position independent
(aka directional) lights are considered to be outside of the scene, and provide parallel
rays of light from an infinitely distant light source. Sunlight is the classic example of
position independent light. Point light sources are inside of the scene, and the light
from them varies according to distance and relative position. Spot lights are like point
light sources, but shine only in a specific direction and in a limited cone. Ambient light
is the level of constant background illumination. (NOTE: in the current library release,
point sources and spot lights are not yet implemented.)

The low-level MPE functions that implement the lighting model may be replaced
by user supplied lighting functions. This means that any kind of user defined light
sources or lighting effects may be provided to enhance the API.

The default lights provided by the API are white lights. Colored lights may be im-
plemented by means of user defined light sources and user defined texture mapping
functions.

1.3 Texture Maps

Any Merlin Media Library display pixmap may be used as a texture on a 3D object
(see the libmmI2d documentation for a discussion of display pixmaps). Most textures
will normally be this sort of traditional bitmap textures. The MML supports other
textures that are particularly useful for 3D rendering. Mip-map textures, for example,
are a series of images (large or small) representing different resolution views of the
same texture. This allows for more effective filtering (anti-aliasing) of the texture,
since the appropriate level of the mip-map may be chosen for the size that the texture
appears on screen. They also reduce bus bandwidth requirements.

These standard texture maps may be supplemented by user designed texture
mapping functions. At the lowest level, the MPE polygon draw function calls pixel
generating functions to draw strips of pixels based upon texture maps. The pixel
generating function may be supplied explicitly by the application, to provide custom
texture mapping and shading effects or procedural textures.

1.4 Procedural Textures

Texture maps are one way to add color and detail to polygons. However, they suf-
fer from a number of limitations. For example, unless a very large texture map is

2 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

used, the individual pixels that make up the texture image will be visible when the it
is viewed up close. Texture maps can also consume a great deal of memory. An al-
ternative way of providing a texture for a polygon is to write a function which specifies
the color of the texture at each coordinate. Such a procedural texture can be scaled
to any size without pixellation, while consuming very litle memory and no bus band-
width. The Merlin 3D API will provide a number of predefined procedural textures,
and also allows user supplied functions to be used as procedural textures. (NOTE:
in the present library release, procedural textures are still somewhat cumbersome to
use (requiring a library recompile). This will be corrected in a future release.)

1.5 Shading

Shading is the task of combining the color information from textures with the light
intensity determined by the lighting model. The Merlin 3D API supports 4 kinds of
shading: flat shading, Gouraud shading, Gouraud shading with specular highlights,
and Phong shading. Flat shading uses only the surface normal of a polygon to de-
termine the shading of pixels. This means that the intensity of light is constant over
the whole polygon. In Gouraud shading, the light intensity is calculated separately at
each vertex and then interpolated across the polygon. This allows a more realistic
appearance for curved surfaces. Gouraud shading with specular highlights adds an
extra (specular) term to Gouraud shading to take into account the reflection of the
light itself from a surface. This allows for more realistic rendering of shiny surfaces
such as plastic or metal. Phong shading is the most realistic (and most computa-
tionally expensive) shading model. In Phong shading the vertex normal vectors are
interpolated, and the lighting model is evaluated at each pixel as it is drawn. This al-
lows for the very accurate specular highlights, and a smoother appearance to curved
surfaces.

(NOTE: Phong shading and flat shading are not directly supported in the current
library release, although it is easy to add either of these with a library recompile.)

1.6 Antialiasing

There are two kinds of antialiasing: texture filtering, and edge antialiasing. Texture
filtering is the process of smoothly scaling texture maps to reduce the artifacts that
arise when a texture is scaled up or down. In the former case the artifacts take the
form of “pixellation,” i.e. the individual pixels that make up the texture map become
visible. In the latter case, the artifacts are typically “twinkling” effects; as the object
moves, the scaled output points are sampled at different locations in the input texture.
Various filtering methods are provided to help overcome these artifacts, including
bilinear interpolation and mip-mapping.

Edge antialiasing is the removal of “jaggies” from the edges of polygons. It is a
relatively expensive operation, but produces a dramatic improvement in the appear-
ance of rendered scenes.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 3

VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

2. C3D API

The low level C 3D API layer gives graphics programmers very close access to the
underlying hardware and MPE rendering primitives. It is designed for low-overhead,
high performance graphics and to provide programmers with a low level API for port-
ing existing applications from other platforms, while at the same time being eas-
ier to use than direct programming of MPEs. There are a number of fundamental
objects which must be specified in order to render a 3D object. The output rou-
tines require the 3D object itself (which is specified by an m3dBuf); a transforma-
tion matrix (m3dMatrix) giving the mapping from object coordinates to world coor-
dinates; a camera (m3dCamera) which among other things includes a matrix spec-
ifying the mapping from world coordinates to screen coordinates; a lighting model
(m3dLightData) for illumination; and an output mmIDisplayPixmap and rectangle
within that pixmap, which together specify where the output will appear.

The separation of camera and output pixmap makes it easy to switch between
different cameras when viewing a scene, or to render several different views of the
same scene (for example, a rear-view mirror overlaid on the view through the wind-
shield of a car).

2.1 Conventions

The coordinate system used has X increasing from left to right, Y increasing from
top to bottom, and Z increases into the screen. The vertices of polygons should be
given in clockwise order. Polygon normal vectors point away from the polygon.

2.2 Matrices

A matrix for the 3D library (m3dMatrix) is a 4 by 4 grid of 16.16 fixed point values.
Points are considered to be 1 by 4 column vectors, again of 16.16 fixed point values,
and are transformed by the matrix by multiplying them on the right; that is, if M is a
matrix, and P a point, then M P is the transformed point.

2.2.1 m3dldentityMatrix

void m3dldentityMatrix(m3dMatrix *M)
Initializes the matrix pointed to by M to be the identity matrix.

2.2.2 m3dEulerMatrix

void m3dEulerMatrix(m3dMatrix *M, m3dreal xrot, m3dreal yrot, m3dreal zrot)

Calculates a rotation matrix from Euler angles, that is, angles relative to the X,
Y, and Z axes. M is the matrix to be initialized. xrot is the angle of rotation relative
to the X axis, expressed as rotations in 16.16 fixed point format (so 90 degrees is
0x00004000). Similarly, yrot and zrot are the angles relative to the Y and Z axes,
respectively.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 5

2.2.3 m3dPlaceMatrix

void m3dPlaceMatrix(m3dMatrix *M, m3dreal X, m3dreal y,m3dreal z)

Changes the transformation matrix M so that the translation component corre-
sponds to a position in space of (z,y,z), where X, y, and z are all 16.16 fixed point
numbers.

2.2.4 m3dMatrixMultiply

void m3dMatrixMultiply(m3dMatrix *dest, m3dMatrix *A, m3dMatrix *B)
Multiplies the matrix A by the matrix B and places the result in dest. All three
pointers must point to different matrices.

2.3 Cameras

A camera (m3dCamera) is an abstraction for a viewer. Associated with every camera
are a focal length (a small 16.16 fixed point value, typically 1.0), maximum Z value
(a 16.16 fixed point number giving the back clipping plane) and a transformation
matrix. The matrix is specified as the mapping from camera space to world space,
so the same matrix may be used for object rendering and viewing from that object's
position in space (this makes attaching a camera to a physical object in the scene
trivial). Internally the matrix is actually inverted (so that it gives a mapping from world
space to camera space) and then multiplied by each object’s matrix to find the object
space to camera space mapping.

2.3.1 m3dInitCamera

void m3dInitCamera(m3dCamera *cam, m3dreal focalLength, m3dreal maxZ)
Initializes a camera. The camera’s transformation matrix will initially be the iden-
tity matrix (so it will positioned at the origin of world space).

2.3.2 m3dSetCameraMatrix

void m3dSetCameraMatrix(m3dCamera *cam, m3dMatrix *mat)
Sets a camera’s tramsformation matrix. mat is an object space to world space
transformation matrix, as set up for example by m3dEulerMatrix and m3dPlaceMatrix.

2.4 Materials

Materials mapped onto 3D objects may be either solid colors or texture maps. They
may also have properties such as shininess or transparency associated with them.

(NOTE: Material properties are not implemented in the current version of the
library.)

6 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

2.4.1 m3dInitMaterialFromColor

void m3dInitMaterialFromColor(m3dMaterial *mat, mmIColor color)
Creates a solid color material from a mmlIColor object. For example, to create a
solid yellow material:

nBdMateri al mat;
n3dl ni t Mat eri al Fr onCol or (&mat ,
mmi Col or Fr onRGB(200, 200, 0));

It is a good idea not to use fully saturated colors, since televisions typically will
smear such colors.

2.4.2 m3dInitMaterialFromPixmap

void m3dInitMaterialFromPixmap(m3dMaterial *mat, mmIDisplayPixmap *pmap)

Creates a material from an existing display pixmap. For example, the 2D library
could be used to create a picture which can then be used in a 3D scene as a texture
map.

2.4.3 ma3dInitMaterialFromJPEG

void m3dInitMaterialFromJPEG(m3dMaterial *mat, mmISysResources *sr, void
*jpegStart, int jpegSize, mmIPixFormat pix)

Creates a texture map material from a JPEG image. sr is the system resources
structure initialized by a call to mmIPowerUpGraphics at start up time. jpegStart is
the starting address of the JPEG image in memory. jpegSize is the size of the JPEG
image, in bytes. pix is the pixel format to use for the data; this should normally be
either e655 for 16 bit pixels or e888Al pha for 32 bit pixels. 32 bit pixels look slightly
better, but consume twice as much memory.

2.4.4 m3dInitMipMapFromJPEG

void m3dInitMipMapFromJPEG(m3dMaterial *mat, int maxLevel, mmISysResources
*sr, void *jpegStart, int jpegSize, mmIPixFormat pix)

Creates a mip-mapped texture map material from a JPEG image. maxLevel is
the number of mip-map levels to be created. Each level is one-half the size of the
previous level, and the first level is the initial size of the image. In the current imple-
mentation maxLevel may be at most 5, which means that the smallest image will be
1/32 the “normal” size of the JPEG. sr is the system resources structure initialized by
a call to mmlIPowerUpGraphics at start up time. jpegStart is the starting address
of the JPEG image in memory. jpegSize is the size of the JPEG image, in bytes. pix
is the pixel format to use for the data; this should normally be either e655 for 16 bit
pixels or e888Al pha for 32 bit pixels. 32 bit pixels look slightly better, but consume
twice as much memory.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 7

2.5 Display Buffers

3D objects are built into a display buffer (an object of type m3dBuf). This buffer is
saved and displayed on screen at a later time. In order to render a display buffer a
transformation matrix mapping the buffer into “world space” must be specified. By
changing this transformation matrix, the buffer may be viewed at different positions
in 3D space. Thus, for example, a display buffer which represents a space ship may
be drawn several times, in different positions, in order to represent different space
ships in a game.

Display buffers may be statically compiled (for example, converted from a pre-
existing polygonal model), or they may be dynamically constructed at run time.

2.5.1 m3dInitBuf

void m3dInitBuf(m3dBuf *buf)

Initializes a display buffer. If the buffer already contains 3D objects such as poly-
gons, all such objects are deleted and the associated memory freed. m3dInitBuf
must be called before any other display buffer functions are applied to the buffer.

2.5.2 m3dFreeBuf

void m3dFreeBuf(m3dBuf *buf)

Frees memory associated with a display buffer. After this call no more display
buffer functions may be called for the buffer buf (except that the m3dInitBuf function
may be called to re-initialize the buffer).

2.5.3 ma3dSetMaterial

void m3dSetMaterial(m3dBuf *buf, m3dMaterial *mat)
Sets the material to use for a buffer. All polygons added to the buffer after this
call will use the material mat.

2.5.4 m3dStartTriangle

void m3dStartTriangle(m3dBuf *buf)
Starts adding a new triangle to the display buffer buf. Between this call and the
next m3dEndTriangle call there must be exactly three m3dAddVertex calls.

2.5.5 m3dEndTriangle

void m3dEndTriangle(m3dBuf *buf)
Finishes adding a triangle to the display buffer buf.

8 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

2.5.6 m3dAddNormal

void m3dAddNormal(m3dBuf *buf, m3dreal x, m3dreal y, m3dreal z)

Adds a normal vector to a polygon. x, y, and z are the components of the vector
as 16.16 fixed point numbers, and must be in normal form (with magnitude 1.0). All
vertices added to the polygon after this one will use (z, y, z) as their normal vector.
Typically each vertex will have its own normal vector, so one would make a sequence
of m3dAddNormal and m3dAddVertex calls. However, for flat shaded polygons it
is only necessary to call m3dAddNormal once; all of the vertices in the polygon can
use the same normal vector.

This function is also available in the variant m3dAddNormal3f, which takes three
floating point numbers as parameters; these floating point numbers are automatically
converted to fixed point.

2.5.7 m3dAddTextureCoords

void m3dAddTextureCoords(m3dBuf *buf, m3dreal u, m3dreal v)

Adds texture coordinates to a polygon. The next vertex added to the polygon
with m3dAddVertex will have u and v as its texture map coordinates. u and v are
both 16.16 fixed point numbers, and should normally be between 0.0 and 1.0, with
(0.0,0.0) being the upper left corner of the texture, and (1.0,1.0) being the lower
right corner. The texture coordinates are automatically converted to the proper pixel
coordinates for the texture map size or mip-map level.

2.5.8 m3dAddVertex

void m3dAddVertex(m3dBuf *buf, m3dreal x, m3dreal y, m3dreal z)

Adds a vertex to a polygon. x, y, and z are the coordinates of the vertex as 16.16
fixed point numbers.

This function is also available in the variant m3dAddVertex3f, which takes three
floating point numbers as parameters; these floating point numbers are automatically
converted to fixed point.

2.6 Rendering and General Initialization

2.6.1 m3dlnit

void m3dInit(mmISysResources *sr, int nummpes)

Initializes the 3D library. This call must be made before any other 3D library calls.
sr is a system resources structure which must have previously been initialized with a
call to the mmIPowerUpGraphics function in the 2D library. nummpes is the number
of MPEs to be used for 3D graphics. If this value is 0, then only one MPE is used.
If this value is more than the number of free MPEs, then all available MPEs will be
used. The MBD_MPE_USAGE hint may be used to control which MPEs are chosen;
setting this hint to MSD_MPE_USE_SELF (the default) will cause the current MPE to

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 9

be chosen first; setting it to M8D_MPE_USE_OTHERS will cause the current MPE to be
used last.
Example of library initialization:

mr SysResour ces sysRes;
m GC gc;

mr Power UpG aphi cs(&sysRes);
mr I nit GC(&gc, &sysRes);
m3dinit(&ysRes, 4);

2.6.2 m3dExecuteBuffer

void m3dExecuteBuffer(mmIGC *gc, mmIDisplayPixmap *pixmap, m2dRect *rect,
m3dBuf *buf, m3dMatrix *objmat, m3dCamera *cam, m3dLightData *lights)
Draws a previously constructed display buffer into a subrectangle of a display
pixmap. gc is a 2D graphics context previously initialized by the mmlInitGC func-
tion. pixmap is a display pixmap (that is, one located in SDRAM). rect specifies the
subrectangle of the display pixmap into which rendering will be performed. buf is a
display buffer (section 2.5) containing the 3D object to be rendered. objmat is a trans-
formation matrix giving the orientation and position of the object. cam is the camera
(section 2.3) to use for rendering. lights is the lighting model to use for illumination.
Multiple objects may be rendered into the same pixmap and rectangle by invoking
the m3dExecuteBuffer function repeatedly. After all rendering into a rectangle is
finished, m3dEndScene should be used to terminate rendering for this frame.

2.6.3 m3dHint

void m3dHint(int kind, int how)

Provides hints to the renderer about how the scene should be drawn. At present
these hints are used to select the filtering and antialiasing options to be used. kind
specifies what kind of hint is being provided.

If kind is MBD_MPE_USAGE, then the hint specifies how MPEs should be allocated/
how may then either be MBD_MPE_USE_SELF, which says that the current MPE should
be used before any others, or MBD_MPE_USE_OTHERS, which says that the current
MPE should be used only if all other MPEs are in use. This interacts with the ar-
gument passed to the m3dInit function which specifies how many MPEs to use.
If four or more MPEs are requested, then clearly the current MPE will be used in
all cases. If only 1 MPE is requested, then only the current MPE will be used if
MBD_MPE_USE_SELF was given, and otherwise the current MPE will be used only if
no other MPEs are available.

If kind is MSD_TEXTURE_FI LTER, then the hint specifies the filtering to be applied
to textures. how may then either be MBD_NONE to specify no filtering, or M3D_BI LERP
to specify bilinear filtering.

If kind is MBD_EDGE_AA, then the hint specfies how edge antialiasing is to be
performed. In this case, kind may be either MBD_NONE, for no edge antialiasing, or
MBD_EDGE_VMLABS to use the VM Labs edge antialiasing code. NOTE: this edge

10 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

antialiasing code is still under development, and performance has not been properly
optimized yet.
2.6.4 m3dEndScene

void m3dEndScene(mmlIGC *gc, mmIDisplayPixmap *pixmap, m2dRect *rect)
Indicates that all rendering is completed, and performs any post rendering effects

that are necessary. This function should be called once per frame for each output

rectangle, after all calls to m3dExecuteBuffer for that rectangle have been finished.

2.7 Using the C API

To render an object into a display pixmap, one typically will perform the following
steps:

1. Create the object (if necessary), including any materials that the object uses.
. Initialize the libraries (this only needs to be done once).
. Set up the lighting model.

. Position the camera at the desired location, with the proper orientation.

2
3
4
5. Provide any anti-aliasing hints that are desired.
6. Set up the transformation matrix for the object.
7. Call m3dExecuteBuffer to draw the object.

8

. When all objects have been drawn for this frame, call m3dEndScene to finish
the frame.

The Merlin Software Developer's Kit contains a number of sample programs
which illustrate this process.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 11

12

VM LABS CONFIDENTIAL PROPRIETARY

6/11/2001

3. Low level MPE routines

NOTE: Everything in this chapter should be taken with a very large grain of salt.
It describes a snapshot of the low level function library at one instant in time, and
is intended only as a rough guide to those who want to hack on the library source
code. In cases where the source code differs from the documentation, the source
code itself should be considered authoritative.

3.1 Introduction

The library provides a number of low level assembly language functions for 3D graph-
ics, including geometry and rendering. This MPE 3D API is not a complete API.
Rather, the intention is that a high level rendering pipeline can easily be built from
the components provided. Users can mix and match their own components with the
standard API components, in order to enhance the functionality or performance of
the rendering pipeline.

The higher level C APIs are built using the MPE 3D API. When a scene is ren-
dered, the C functions pass control to MPE code that forms the top level rendering
pipeline. A standard rendering pipeline is provided, but users can replace this top
level pipeline with a custom one if they wish to.

The standard pipeline uses a table to look up which functions to use for point
transformation, clipping, lighting, perspective transformation, and rendering. It is
therefore a simple matter to replace one or more of these modules while leaving the
others intact. The C APIs use this mechanism to modify the rendering pipeline as
different rendering attributes are selected (e.g. as perspective correction for texture
maps is turned off or on, or as the shading level is changed).

3.2 Transformations
In the discussions below, we will use the following terms:

object coordinate system the local coordinate system for the model being ren-
dered. Typically this is arranged with the origin at the center (or center of
gravity) of the object.

world coordinate system the global coordinate system, used for positioning ob-
jects relative to one another.

camera coordinate system the local coordinate system for the camera. In this co-
ordinate system, the positive Z axis points in the direction the camera is point-
ing, the positive Y axis points below the camera, the positive X axis points to
the right of the camera, and the camera is positioned at the point (0,0,0).

screen coordinate system the coordinate system for the screen, where (0,0) is the
upper left corner.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 13

All coordinate systems are left handed.

Transformations between the object, world, and camera coordinate systems are
specified by a 4x4 transformation matrix. The left 3x3 submatrix specifies a rotation;
each element of this submatrix is a 2.30 fixed point number. The final column of the
4x4 matrix is a translation vector; each element of this is a 16.16 fixed point number.
The final row of the matrix must always have a certain fixed form. The entire matrix
is specified as follows:

Xrite xdown xhead xposn

yrite ydown yhead yposn

zZrite zdown zhead zposn
0 0 0 1

Note that although the matrix entries are given as 16.16 fixed point numbers
to the C API, they are translated by that API into 2.30 fixed point numbers where
appropriate (in the rotation elements of the matrix).

The world and camera coordinate systems are isometric, i.e. the distance be-
tween points is the same in each system. The transformation from object coordi-
nates to world or camera coordinates may involve a scaling, but if so, the scaling
must be handled automatically by the “front end” code which converts points to in-
ternal format. From the point of view of the ROM library, all transformation matrices
must be isometric.

The transformation from camera coordinates to screen coordinates is a perspec-
tive transformation, and is handled in a special manner; see the description of MPE
viewports (section 3.4) for details.

3.3 Lighting

All lighting calculations are performed in the camera coordinate system. This has
three advantages: (1) fog and similar distance cueing effects are easy to implement,
since the distance from a point to the camera can be approximated by its Z value,
(2) since camera and world coordinates are isometric, distance based lighting effects
work correctly in both systems, and (3) it is easy to transform from screen coordinates
to camera coordinates, so per-pixel lighting calculations (e.g. for Phong shading) can
share code with per-vertex lighting calculations (e.g. for Gouraud shading).

The MPE routines support 4 kinds of light: ambient light, position independent
light (e.g. sunlight), position dependent (in-scene) point light sources, and position
dependent spot light sources. The ambient light in a scene illuminates all objects with
the same intensity, regardless of their positions or orientations. Position independent
light sources are like “infinitely distant” light sources; they shine on all objects in the
scene, and the direction of the light is constant. Point light sources are located at a
specific point in space, and shine in all directions. The angle between a point light
source and an object depends on the relative positions of the object and the light.
Spot lights are a special case of point light sources; they shine only in a particular
direction, and emit a cone of light at most 90 degrees wide.

The entire lighting model for a scene is specified by the following structure:

14 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

ambient light in- | 2 bytes 4.12 fixed point number; 1.0 is maxi-

tensity mum intensity

number of direc- | 2 bytes 16 bit integer

tional lights

number of in- | 2 bytes 16 bit integer

scene lights

number of spot | 2 bytes 16 bit integer

lights

reserved 8 bytes reserved for future expansion; set to
0

After this structure the actual lights appear; first the directional lights, then the
in-scene lights, then the spot lights.
Directional lights have the following structure:

nx 2 bytes | X component of normalized direction vector (2.14
format)

ny 2 bytes | Y component of normalized direction vector (2.14
format)

nz 2 bytes | Z component of normalized direction vector (2.14
format)

intensity 2 bytes | intensity of light in 4.12 format; 1.0 is maximum
intensity

reserved 8 bytes | reserved for future expansion; set to 0

Positional lights have the following structure:

X position 4 bytes | x position of light in 16.16 fixed point format

y position 4 bytes | y position of light in 16.16 fixed point format

z position | 4 bytes | z position of light in 16.16 fixed point format

intensity 2 bytes | intensity of light in 4.12 fixed point format (1.0 =
maximum intensity)

reserved 2 bytes | set to 0; reserved for future expansion

Spot lights have the following structure:

X position 4 bytes | x position of spot light (16.16 fixed point)

y position 4 bytes | y position of spot light (16.16 fixed point)

Z position 4 bytes | z position of spot light (16.16 fixed point)

intensity 4 bytes | intensity of spot light (4.28 fixed point)

x direction | 4 bytes | direction of light (2.30 fixed point)

y direction | 4 bytes | direction of light (2.30 fixed point)

z direction | 4 bytes | direction of light (2.30 fixed point)

cone angle | 4 bytes | cosine of the cone angle, as a 2.30 fixed point
number; this gives the angle beyond which the
spot light will have no effect

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 15

3.4 MPE Viewports and Cameras

The destination for a render is described by a viewport structure. This low level
viewport structure corresponds to the higher level mmIDisplayPixmap type used in
the Merlin Media Library C functions, together with a rectangle specifying exactly
where in the display pixmap the output should go.

This structure thus describes output bitmap (its location in memory, width, height,
and DMA flags) and also the camera’s focal length. These parameters are used to
control the perspective transformation and clipping to the viewing frustum.

The MPE viewport structure contains the following fields:

DMA flags 4 bytes | flags used to DMA into output bitmap, includ-
ing pixel mode and Z buffer compare flags.
Note that the Z buffer is actually a “proximity
buffer” (it records 1/Z) and so the Z compare
should normally be set to inhibit write if target
pixel Z > transfer pixel Z.

base address | 4 bytes | pointer to start of output bitmap in external

RAM
minimum X 2 bytes | smallest value of X to use for clipping
maximum X 2 bytes | largest value of X to use for clipping
minimum Y 2 bytes | smallest value of Y to use for clipping
maximum Y 2 bytes | largest value of Y to use for clipping
Y center of | 4 bytes | the center of projection in the output bitmap,
viewport as a 16.16 fixed point number; normally this

will be height/2

Along with the viewport structure, a camera must be specified for rendering. The
MPE camera structure contains the following fields:

view matrix 64 a 4 by 4 transformation matrix specifying
bytes the conversion from world space to camera

space
focal length of | 4 bytes | the focal length of the camera, as a 16.16
camera fixed point number; this should have been

premultiplied by the width of the output buffer
back clipping | 4 bytes | the distance to the back clipping plane of the
distance viewing frustum, as a 16.16 fixed point num-
ber; this value is used only if all 6 clipping
planes are enabled

X center of | 4 bytes | the center of projection in the output bitmap,

viewport as a 16.16 fixed point number
Y center of | 4 bytes | the center of projection in the output bitmap,
viewport as a 16.16 fixed point number

The 2D screen coordinates of a point are calculated from the 3D camera coordi-
nates of the point using the following perspective transformation formulae:

16 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

screenX

(focal d*caner aX)/ caneraZ + xcenter

screenY = (focal d*caneraY)/caneraZ + ycenter

Note that f ocal d has already been multiplied by the screen width.

3.5 MPE Polygon and Point Formats

All of the MPE 3D API functions use a standard format for polygons. The first vector
of the polygon has the following layout:

number of | 4 bytes | number of points in the polygon

points

texture map 4 bytes | pointer to a texture map or other data to be

used by pixel generating function

reserved word | 4 bytes | reserved, setto 0

material type 4 bytes | setto 1

After this header come the points. Each point in the polygon has the following
layout:

X 16.16 fixed point X value for point

Y 16.16 fixed point Y value for point

z 16.16 (later may | Initially: Z value for point After perspec-

be 2.30 fixed | tive transformation this may be 1/Z value
point) of point (if we are doing perspective cor-
rect Z buffering)

lu 8.24 fixed point shading parameter; typically texture U co-
ordinate (with 0.0 being the left edge, 1.0
the top edge)

10 2.30 fixed point Initially: X component of normal vector
After per-vertex lighting: Y (i.e. luma)
component of color (Gouraud shading)
or diffuse intensity (shaded textures) or
X component of normal vector (Phong
shading)

11 2.30 fixed point Initially: Y component of normal vector
After per-vertex lighting: Cr component of
color (Gouraud shading) or specular in-
tensity (shaded textures) or Y component
of normal vector (Phong shading)

12 2.30 fixed point Initially: Z component of normal vector
After per-vertex lighting: Cb component
of color (Gouraud shading) or Z compo-
nent of normal vector (Phong shading)

\Y 8.24 fixed point shading parameter, typically texture V co-
ordinate (with 0.0 being the top edge, 1.0
the bottom)

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 17

3.6 MPE Geometry Functions

3.6.1 xformlo

Transform a point (low precision version).
Inputs:

r0 = pointer to output vertex (in standard format)
rl = pointer to input vertex (in standard format)
r2 = pointer to 4x3 transformation matrix

Outputs:
Storage pointed to by r0 is modified.

Transforms a point from one coordinate system to another. Only the most significant
16 bits of the transformation matrix and point coordinates are used in the transfor-
mation.

3.6.2 xformhi

Transform a point (high precision version).
Inputs:

r0 = pointer to output vertex (in standard format)
rl = pointer to input vertex (in standard format)
r2 = pointer to 4x3 transformation matrix

Outputs:
Storage pointed to by r0 is modified.

Transforms a point from one coordinate system to another. All 32 bits of the transfor-
mation matrix and point coordinates are used in the transformation.

3.7 MPE Clipping Functions

3.7.1 calcclip

Calculate outcodes for clipping.
Inputs:

r0 = points to point (in standard format) to check

Outputs:

r0 = bit mask giving the results of testing; bit N is 0 if the point is on the positive
(inside) side of plane N, 1 if it is on the negative (outside) side

18 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

calcclip is intended to be used for trivial accept/reject processing. All of the points
in a polygon will be tested with calcclip against the clipping planes of the viewing
frustum. If calcclip returns 0 for all points, the point is within the viewing frustum and
can be trivially accepted. If for some plane, calcclip returns a 1 for every point, then
the polygon lies completely outside the viewing frustum and may be trivially rejected.
The latter test is easily implemented by testing the bitwise AND of the values returned
from calcclip.

The clipping planes are stored in a known, fixed location, and are provided in the
order:

z>1

z>0

x < screen width
y>=0

y < screen width

2z < max depth

3.7.2 doclip

Clip a polygon against a plane.
Inputs:

r0 = pointer to input polygon (in standard format)
rl = pointer to space for output polygon
r2 = pointer to clipping plane (a small vector)

Outputs:
r0 = number of points in the clipped polygon

Clips an input polygon against a plane, producing as output a polygon all of whose
points lie on the non-negative side (“inside”) of the plane. The generated polygon
may have 0 to N+1 points, where N is the number of points in the input polygon. If
the input polygon straddles the plane, then the output polygon will contain new points
along the polygon edges which cross the plane. These new points will be produced
by linearly interpolating the polygon structure elements to find their values at the
point of intersection of the edge with the plane.

3.8 MPE Perspective Transformation Functions

3.8.1 persp

Do a perspective transformation on a point.
Inputs:

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 19

r0 = pointer to output point (in standard format)
rl = pointer to input point (in standard format)
r2 = pointer to viewport data

Outputs:
Data is written to the area pointed to by rO.

Transforms a point from camera coordinates to screen coordinates. The X, Y, and Z
coordinates are transformed. X and Y are projected to screen coordinates using the
algorithm described in the Viewport section above. The Z coordinate is converted
to 1/Z (for perspective correct Z buffering). However, no other fields of the point are
modified. In particular, texture coordinates are not perspective corrected. See the
perspcrct function. Note that the final pixel generation functions used for rendering
(see 3D Rendering Functions below) must be matched with the perspective function
(persp or perspcrct) chosen by the programmer.

3.8.2 perspcrct

Do a perspective transformation on a point and on its texture coordinates.
Inputs:

r0 = pointer to output point (in standard format)
rl = pointer to input point (in standard format)
r2 = pointer to viewport data

Outputs:
Data is written to the area pointed to by r0.

Transforms a point from camera coordinates to screen coordinates. The X, Y, and Z
coordinates are transformed as in the persp function. The U and V coordinates of the
point structure are divided by Z. This makes it possible to linearly interpolate them
in screen space, so that perspective correct texture coordinates can be generated.
This requires that e.g. the interpolated U/Z be divided by the interpolated 1/Z at each
pixel, and hence requires that the appropriate pixel generating functions be used in
the rendering process. NOTE: This function is not yet implemented in the MML3D
library.

3.9 MPE Lighting Functions

An important part of the rendering pipeline is lighting of vertices. There are actually
two places where lighting is performed. Some lighting calculations are performed on
a per-vertex basis; others are performed at each pixel. For example, Gouraud shad-
ing is performed by lighting each vertex of a polygon, and then linearly interpolating
the resulting lighting information across the surface of the polygon. In this case the
initial lighting calculations are performed per-vertex, whereas the linear interpolation

20 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

and final pixel shading are performed on a per-pixel basis. The per-pixel calculations
are performed in the final rendering step, in the pixel generation functions (section
3.11). The per-vertex and per-pixel lighting must be synchronized, since the output
of the per-vertex step (e.g. the Gouraud lighting coefficients) is used by per-vertex
calculations. For example, mixing a Gouraud per-vertex calculation with a Phong
shading pixel generation function is unlikely to produce the desired results.

The lighting functions are designed so that they may be used for either per-vertex
lighting, or as part of a pixel generating function. They all use the same calling
sequence and generate the same return values. Those return values consist of fixed
point numbers between 0 and 1, giving the total diffuse and specular intensities at
the vertex.

The diffuse intensity is the “normal” brightness of the surface; the specular in-
tensity measures how much the light itself might be reflected from the surface. The
diffuse intensity is calculated based on the assumption that the surface is a perfect
reflector (i.e. that it is as bright as possible) and should be scaled according to the
actual brightness of the surface. The specular intensity is calculated using the spec-
ular coefficient; the higher the coefficient, the smaller the highlight. (For each light,
the specular intensity contributed by that light is proportional to the cosine of the
angle between the camera’s viewing vector and the vector at which total reflectance
would occur, raised to the power of the specular coefficient.) Basically, the diffuse
intensity controls the blending between the surface’s color and black, and the spec-
ular intensity between the surface’s color and the light's color (normally white). If d
is the diffuse intensity, s the specular intensity, and P is a vector representing the
underlying surface color at a point, then the color displayed at that point should be:

d*(1-s)*P + s*Wiite

3.9.1 glight

Do Gouraud lighting (without specular component) for a point.
Inputs:

r0 = pointer to lighting model
rl = pointer to vertex to be lit (in standard format)
r2 = specular coefficient of material (NOT USED)

Outputs:

r0 = diffuse intensity (in 2.30 format)
rl = 0.0 (in 2.30 format)

Calculates the diffuse intensity for a vertex, based upon the vertex normal, the ver-
tex position, and the lighting model. This function does not do specular lighting,
and hence is significantly faster than gslight. It is suitable for chalky or dull diffuse
surfaces which are not expected to have reflected highlights.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 21

3.9.2 gslight

Do Gouraud lighting (including specular component) for a point.
Inputs:

r0 = pointer to lighting model
rl = pointer to vertex to be lit (in standard format)
r2 = specular coefficient of material (an integer)

Outputs:

r0 = diffuse intensity (in 2.30 format)
rl = specular intensity (in 2.30 format)

Calculates the diffuse and specular intensities for a vertex, based upon the vertex
normal, the vertex position, and the lighting model. Useful for plastic or metallic
surfaces.

3.10 MPE Rendering Functions

3.10.1 drawpoly

Draw a convex polygon, using a specified pixel generating function. No antialiasing
is performed.
Inputs:

r0 = pointer to polygon to be drawn (in standard format)
rl = pointer to output viewport
r2 = pointer to pixel generating function (see below)

Outputs:
None.

Draws a (non-antialiased) polygon on the bitmap associated with the given view-
port. The polygon may have any number of sides, but must be completely clipped
to the output bitmap (no clipping is performed by this function). The vertices must
be specified in clockwise order; if they are in counter-clockwise order then no pixels
are drawn. The specified pixel generating function is used for drawing the strips of
(horizontal or vertical) pixels that make up the polygon. If the “texture map” field of
the input polygon is non-null, and the corresponding texture will fit completely in local
cache, then it is loaded into local RAM and the uv bilinear addressing registers are
set up to point to it.

22 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

3.11 Pixel Generating Functions

The most basic 3D rendering functions are the pixel generating functions . These
are called from the higher level polygon draw functions. A pixel generating function
must generate a strip of pixels. The strip is generated as if it were a horizontal
strip, although it may in fact be drawn vertically (in this case the calling function, e.g.
drawpoly, will swap the x and y information input to the pixel generating function).
The following predefined functions are provided for application use:

3.11.1 aabilerp

Draws texture mapped, gouraud shaded pixels with specular highlights, bilinear fil-
tering, and edge antialiasing.

3.11.2 bilerppix

Draws texture mapped, gouraud shaded pixels. The pixels are bilinearly filtered to
produce some antialiasing. No edge antialiasing is performed.

3.11.3 specpix

Draws texture mapped, gouraud shaded pixels with specular effects (no antialiasing
or perspective correction).

3.12 User Supplied Pixel Generating Functions

It is expected that applications will often wish to supply their own pixel generating
functions to perform various special effects such as procedural textures, or to take
advantage of other special algorithms. Because of efficiency considerations, pixel
generating functions do not obey the normal calling conventions. Instead, they follow
the conventions described below:

Inputs:

v4-v7: Various inputs, as defined in the include file “drawregs.i”. The significant
ones for pixel generation are:

_Du: initial texture u coordinate (16.16 fixed point
nunber)

D initial texture v coordinate (16.16 fixed point
nunber)

_Di0: diffuse shading index (2.30 fixed point nunber)

_Dil: specular shading index (2.30 fixed point nunber)

D z: initial depth (i.e. 1/2z)

_D du: change in u across scan line (i.e. du/dx)

_D dv: change in v across scan line (i.e. dv/dx)

_D di0: change in i0 across scan line

_D dil: change in il across scan line

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 23

D dz: change in depth across scan line

r c1: Number of pixels to generate (always > 0)

(xy) bilinear addressing registers: Set up to address the output area, i.e. the
strip of pixels to be drawn. r y should never be modified; r x should be incremented
as pixels are stored into the area.

(uv) bilinear addressing registers: Set up to address the input texture map, if
any. Note, however, thatr u and r v are NOT set up correctly, and must be initialized
with a st _i o from _D_u and _D_v respectively.

Outputs: Registers D.u, Dv, Di0, Di 1, and Dz must be updated to their
new values. Generated pixels must be stored into the buffer pointed to by (xy) .

Other registers which may be modified: vO, v1, r c1 All other registers should be
left unmodified. In particular, r cO must not be changed.

See the sample pixel generating functions distributed with the MMA Software
Developer’s Kit for some examples of how to write pixel generating functions.

Note that the values held in registers v2 and v3 are not needed during pixel
generation, and so it would be logical to use these as scratch registers (after saving
them on the stack, of course).

24 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

Index

antialiasing, 3, 10

camera coordinate system, 13
display buffer, 8

filtering, 3, 10

Gouraud shading, 3, 20

intensity, diffuse, 21
intensity, specular, 3, 21

light, ambient, 14

light, point source, 14

light, position independent, 14
light, spot, 14

lighting, 2, 20

lights, 14

m3dAddVertex, 8
m3dAddNormal, 9
m3dAddNormal3f, 9
m3dAddTextureCoords, 9
m3dAddVertex, 9
m3dAddVertex3f, 9

m3dBuf, 5, 8

m3dCamera, 5, 6
m3dEndScene, 10, 11
m3dEndTriangle, 8
m3dEulerMatrix, 5, 6
m3dExecuteBuffer, 10, 11
m3dFreeBuf, 8

m3dHint, 10
m3dldentityMatrix, 5

m3dinit, 9, 10

m3dInitBuf, 8
m3dInitCamera, 6
m3dInitMaterialFromColor, 7
m3dInitMaterialFromJPEG, 7
m3dInitMaterialFromPixmap, 7
m3dInitMipMapFromJPEG, 7
m3dLightData, 5

m3dMatrix, 5
m3dMatrixMultiply, 6
m3dPlaceMatrix, 6

m3dSetCameraMatrix, 6
m3dSetMaterial, 8
m3dStartTriangle, 8
mmiColor, 7
mmiDisplayPixmap, 5, 16
mmllnitGC, 10
mmlPowerUpGraphics, 7, 9

object coordinate system, 13

perspective transformation, 16
Phong shading, 3

pixel generating function, 23

point format, standard MPE, 17
polygon format, standard MPE, 17

texture map, 2
texture, procedural, 2, 23

world coordinate system, 13

Z buffer, 1

6/11/2001

VM LABS CONFIDENTIAL PROPRIETARY

25

