
V M L A B S

XLisp Tutorial:
an Introduction for C Programmers

Revision 1.6
6 August 1998

VM Labs, Inc.
167 So. San Antonio Rd, Suite 17
Los Altos, CA 94022
Tel: (415) 917 8050
Fax: (415) 917 8052

PAGE 2

VM LABS CONFIDENTIAL PROPRIETARY

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 3

Copyright  1997 VM Labs, Inc. All rights reserved.

The logo is a trademark of VM Labs, Inc.

Proprietary and Confidential to VM Labs, Inc.
The information contained in this Document, is provided pursuant to a Non-Disclosure
agreement between VM Labs, Inc. and the recipient. It may not be distributed or copied in any
form whatsoever without the express written permission of VM Labs, Inc.
The information in this document is preliminary and subject to change at any time. VM Labs
reserves the right to make changes to any information described in this document.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 4

CONTENTS

1. INTRODUCTION..5

1.1 XLISP DATA TYPES...5
1.1.1 Numeric data types..5
1.1.2 Non-numeric data types ..5

2. THE XLISP EVALUATOR ..7

2.1 SPECIAL FORMS ..8
2.1.1 DEFINE ..8
2.1.2 IF...8

2.2 NESTED ENVIRONMENTS AND LET...9
2.3 SET! ...11
2.4 QUOTING...12

3. LAMBDA..14

3.1 CREATION AND MANIPULATION OF LISTS ..16
3.1.1 Building up lists with CONS..17
3.1.2 Concatenating lists..18

3.2 PROCEDURE DEFINITION IN XLISP ...18
3.2.1 Optional, rest, and keyword arguments ..20

4. XLISP FILE I/O...22

5. XLISP OBJECT SYSTEM..25

6. NAMED LET..27

7. MULTIPLE VALUES ...29

8. REFERENCES...31

9. INDEX...32

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 5

1. INTRODUCTION
XLisp is a lisp implementation written and maintained by David Betz. It is based largely on the standard
lisp dialect, Scheme, which it extends with a Smalltalk-like Object System. Generally speaking,
Scheme programs will run on XLisp—the exceptions involving use of special features like arbitrary-size
integers (known in lisp parlance as "bignums"). Accordingly, any of the several good textbooks on
Scheme [see the References] will prove useful to the XLisp programmer. Scheme is not an "obscure"
language—it is the language of choice in Computer Science departments at many universities,
including MIT where it was developed in 1975.
This tutorial is intended as a briefest-possible introduction for the C programmer who is not assumed to
have any background in lisp programming.

1.1 XLisp Data Types

1.1.1 Numeric data types
XLisp's numeric data types are a subset of C's:

integer corresponds to C’s long int
number corresponds to C’s double

 Table 1

(Full Scheme also has bignums, rationals, and complex numbers.)

1.1.2 Non-numeric data types
XLisp also has the following non-numeric data types:

string identical to C's, e.g. "Hello, world!"
character represents the ASCII set.

The notation is #\a for what C would write as 'a'.
Special cases are #\space and #\newline.

vector An array of objects of inhomogeneous type, for example #(27 "George" #\z).
Roughly equivalent in C to an array of void pointers.

Boolean #t or #f,
similar to C's 1 and 0. False (#f) is also represented, for traditional reasons, by the
empty list () and equivalently by the symbol NIL. In C, anything non-zero is true; the
same thing happens in XLisp, where anything different from #f (or the equivalents, ()
or NIL) is treated as #t.

symbol In C, symbols are used as identifiers, but symbols are not a data type. In XLisp, where
symbols are also used as identifiers, the value of a symbol can be another symbol.

procedure XLisp allows run-time creation of procedures, which are first class objects (i.e., can be
passed as arguments, returned as values, or created anonymously in expressions).

Class, Object XLisp provides a Smalltalk-like Object System.

Table 2

These are the “atomic” data types of XLisp. XLisp uses these to build up general Symbolic
Expressions, called S-Expressions. The prototypical S-Expression is the list, written as a space-
separated list of elements enclosed in parentheses:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 6

(a1 a2 ... aN)

The list elements can be arbitrary data objects including other lists.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 7

2. THE XLISP EVALUATOR
XLisp is an interpreter which normally runs in a READ-EVAL-PRINT loop: that is, it repeatedly READs
an S-Expression typed at the keyboard (or input from a file), EVALuates the S-Expression, and
PRINTs the value on the console.
Constants evaluate to themselves—for example:

[1] 27
27
[2] "George"
"George"
[3] _

(Notice that XLisp numbers its inputs, allowing them and their associated responses to be
subsequently recalled, as described below.)
Symbols that have been assigned a value will return that value when evaluated:

[3] nil
()
[4] +
#<Subr +>
[5] _

The symbol NIL is "bound" to the empty list, (), which is also the value of the Boolean #f. The symbol
+ is bound to (has as its value) a pre-defined subroutine which adds numbers.
Lists are similar to function calls, in which the first list element names the function and the remaining
elements are arguments. For example,

[5] (+ 3 4 10)
17
[6] (string-append "Fred" "+" "Ginger")
"Fred+Ginger"
[7] _

In each case, the first list element is a procedure; the Evaluator proceeds to evaluate each of the
remaining list elements and use their values as arguments to that procedure. This is a recursive
definition, because list elements may themselves be lists that need to be evaluated:

[7] (+ (* 3 5) 100)
115
[8] _

Notice here that the second list element—(* 3 5)—is a list which evaluates to the product of 3 and 5,
i.e. 15. The third list element, 100, is a constant that evaluates to itself. The first list element, whose
value is the addition procedure, adds the values of the other list elements to give 15 + 100 = 115.
As a final example, we mention the functions alluded to above for recalling expressions previously
entered, and the values returned. %e takes a single integer argument, and returns the S-expression
typed as input; the value returned can be recalled using %v in the same way:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 8

[8] (%e 5)
(+ 3 4 10)
[9] (%v 6)
"Fred+Ginger"
[10] _

2.1 Special Forms
List-evaluation typically involves evaluating all list elements, followed by applying the value of the first
element—which must be a procedure—to the values of the remaining elements, which are arguments
to that procedure. There are certain situations where the Evaluator must deviate from this practice, and
not automatically evaluate each list element before making the procedure call. These lists are known
as special forms, and are distinguished by special pre-defined symbols which appear as the first list
element. For example, the list (define x 100) is recognized as a special form because the Evaluator
knows about the reserved symbol define. Another such reserved symbol is if—both are described
below. (Informally, one sometimes speaks of the reserved symbol itself as the special form.)

2.1.1 DEFINE
Define is used to introduce symbols into symbol-tables, and optionally to assign values to those
symbols. For example:

[8] (define x 100)
x
[9] x
100
[10] (+ x 1)
101
[11] _

Statement [8] creates a symbol-table entry for x, and binds it to the initial value 100. Typing x at XLisp
in [9] shows that it was paying attention. Statement [10] shows that x can be used in an expression,
and its value will be looked up and used.
Define cannot be an ordinary procedure, for then its arguments would have to be evaluated and we
know that its first argument, x, is not guaranteed to have a value. In fact, it may be unknown to the
system (that is, not found in the symbol-table, which is different from having an entry but simply not
having been assigned a value). In fact, the whole purpose of define is to introduce a new symbol and
assign it a value. So the Evaluator recognizes define and handles the situation specially.

2.1.2 IF
If has a similar problem to deal with: its general form is

(if test consequent alternative)

and it may be important not to evaluate both the consequent and the alternative. This situation arises in
C:

c = getc(in);
if (c != EOF)

putc(c, out); // do this--
else

fclose(out); // or this, but not both!

In lisp, the corresponding code looks like:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 9

(set! c (read-char in)) ; set!, like define, is a special form
(if (not (eof-object? c)) ; if we're not at end-of-file

(write-char c out) ; then write the char to output
(close-port out)) ; else, close the output port

With ordinary procedures, the Evaluator evaluates all the list elements before applying their values as
arguments. Therefore, if is treated as a special form: the first argument, test, is evaluated, and
depending on whether it returns true or false either the second or the third argument will be evaluated,
but never both. The value of the one chosen is the value of the if expression:

[11] (if (zero? x) "Can't take reciprocal of Zero!" (/ 1 x))
0.01
[12] _

Here the test part is an ordinary procedure call: the function zero? returns #t only if its argument is in
fact 0. If that is the case, the if will evaluate the second argument, which is a string constant, and
return that—it won't attempt to evaluate the third argument which would involve the forbidden deed. In
our case, x is 100, so the test returns ()—i.e., NIL which is the same as #f—and the reciprocal is
computed by using the division procedure / to divide 1 by x.
Generally, we can treat evaluation of a list by a single rule: the first element specifies some type of
operator and the remaining elements are its operands. Special forms, in which the first element is one
of a few predefined keywords, are handled specially—some of the arguments being evaluated and
others not, as dictated by the keyword. (The user can augment this keyword set using the macro
facility, but this is a separate topic.) Other than this, all list elements are evaluated, and the first had
better turn out to be a procedure that can accept the values of the remaining elements as its
arguments.

2.2 Nested Environments and LET
An Environment is a symbol-table. When we type S-Expressions at the XLisp Evaluator, symbols
occurring in these expressions are looked up in the global environment. For example, when we type

[1] (+ 3 5)
8
[2] _

the symbol + is looked up; its value, in the global symbol-table, is a procedure that adds numbers. If a
symbol occurring in the expression cannot be found, an error will occur. We have seen above how
define is used to introduce a new symbol into the current environment and assign it an initial value.
Notice the use of the modifier current in referring to the environment: environments can be nested, and
a symbol that occurs in a nested environment can "shadow" the value of that symbol defined in an
outer environment (including the global environment). This is the same block structuring that is seen in
C:

int x = 85;
{

int x = -2;
printf("inner x = %d\n", x); // prints "x = -2"

}
printf("outer x = %d\n", x); // prints "x = 85"

Nested environments are created explicitly with the special form let:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 10

[2] (define x 85)
x
[3] (let ()

(define x -2)
(print x))

-2
#t
[4] x
85
[5] _

Here at the "top level," we introduced the symbol x into the global environment and gave it the value
85. In statement [3], we created a let form: let's first argument is a list of symbols being created in a
new symbol-table (environment) that is linked to the global environment. Here the list is empty: no new
symbols are being introduced. That is done by the define, which is invoked within the scope of the
let. This define introduces the symbol x and assigns it the value -2. When the print function is
invoked in the next line, the Evaluator looks up x in the innermost enclosing environment, which is the
one created by the let: there it finds the x that was deposited by the define, and discovers that its
value is -2. The effect of invoking the print procedure is to print the value of x (here -2). (The #t on
the line below the -2 is the value returned by the let expression: the READ-EVAL-PRINT loop prints
the value of the let expression it has just EVALuated.)
Statement [4] shows that the global value of x has not been affected. The nested environment went
"out of scope" when we crossed the second parenthesis after the print—the one that balanced the
open parenthesis of the let itself.
The normal syntax of let is

(let ((sym1 val1) (sym2 val2) ...)
exp1 exp2 ...)

where sym1, sym2, ... are symbols that are being introduced into the nested environment, and
val1, val2, ... are arbitrary expressions whose computed values are assigned to the associated
symbols. The body of the let consists of a series of S-Expressions exp1, exp2, ... which are
evaluated sequentially inside the nested environment. Thus, the symbols sym1, ... can occur in these
expressions and will have the values that have been locally assigned. The value returned by the let is
the value of the final expression found in its body.
The example shown above in [3] could be reworked equivalently as follows:

[5] (let ((x -2))
(print x))

-2
#t
[6] x
85
[7] _

Again we see that the global value of x is unchanged.

It is important to understand that that the expressions val1, ... in the general let form above are
evaluated in the innermost surrounding environment that encloses the let. For example:

[7] (let ((x -2)
(y (+ 1 x)))

(+ x y))
84
[8] _

The value of the let is the value of the single expression in its body: (+ x y). Here, the evaluator
searches for the value of the symbol + and finds it in the global environment with its usual value (the
addition procedure). x is looked up in the same manner, but here a value is found in the innermost

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 11

enclosing environment: -2. y is found in this same environment and has the value 86. That arises
because the expression (+ 1 x), whose value is assigned to y, is evaluated in the environment that
encloses the let, and in this environment x has the value 85. Consider instead the expression:

[8] (let ((x -2))
(let ((y (+ x 1)))

(+ x y)))
-3
[9] _

Now we have a pair of nested lets: when the symbol y is introduced in the second of these, the x
comes from the previous let which shadows the x in the global environment. In evaluating (+ x y) ,
the Evaluator searches back along the chain of enclosing environments until each of the symbols is
found. y is found in the innermost enclosing environment, and x is located in the environment that
immediately surrounds that.
The special form let* allows a simple abbreviation for nested lets:

(let ((s1 v1))
(let ((s2 v2))

(let ((s3 v3))
exp1
exp2)))

can be written more succinctly with let*:
(let* ((s1 v1)

(s2 v2)
(s3 v3))

exp1
exp2)

Thus the example of [8] could be rewritten as:
[9] (let* ((x -2)

(y (+ x 1)))
(+ x y))

-3
[10] _

2.3 SET!
C programmers normally code their algorithms as a series of assignment statements: an expression is
computed and the value is assigned to a variable, as in

x = a + b;

The XLisp-equivalent expression is
(set! x (+ a b))

SET!, like DEFINE, is a special form that treats the first argument — here x — as a target symbol to
receive the value computed from the second argument. Normally, DEFINE is used to introduce new
symbols into the current environment, and SET! is used to alter (reassign) the values bound to these
symbols.
In formal Scheme, it is an error to use SET! on a new symbol, or to re-DEFINE an existing one; most
conversational Schemes, including XLisp, are more tolerant, and will allow DEFINE and SET! to be
used interchangebly at the top level. But in nested environments, the behavior is very different: SET!
will search for the target symbol starting in the environment active at its point of invocation, looking
backward through the nested hierarchy, and modify the first instance of that symbol it finds. If the

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 12

symbol cannot be found at all, it will be introduced and assigned at the top level — that is, in the global
environment. DEFINE, on the other hand, only acts within its local environment. For example:

[1] (define x 85)
x
[2] (define y -10)
y
[3] (let ((y 100))

(set! x 7)
(set! y 5)
(format #t "x = ~A, y = ~A~%" x y))

x = 7, y = 5
()
[4] x
7
[5] y
-10
[6] _

In statements [1] and [2], we introduce global variables x and y, assigning them the values 85 and -10,
respectively. In [3], we create a nested environment in which a local symbol y occurs with a value of
100. The two SET! statements reassign x and y to 7 and 5, respectively. The FORMAT statement —
described later — prints the values of x and y and shows that they have changed. But notice from [4]
and [5] that the global value of x has been altered, while the top-level y remains unmolested. This
illustrates the behavior of SET! outlined above. Had DEFINE been used in place of SET!, the printed
output would have been the same, but the global values of both x and y would have been unaffected.

2.4 Quoting
Symbols are a data type, but how could you assign a symbolic value to a variable? For example, I want
to create a variable x and initialize it to have the symbolic value done. The following attempt fails:

[1] (define x done)
error: unbound variable - done

and the interpreter enters a Debug loop from which we can escape by entering the function call
(reset).
The problem is that the define wants to assign to x the value of done, and so looks up done in its
symbol table and doesn't find it. We're not getting what we intended here: we don't want the value
associated with the symbol done but the symbol done itself. There is a special form, quote, for dealing
with just this situation:

[1] (define x (quote done))
x
[2] x
done
[3] _

When the Evaluator sees a list whose first element is the keyword quote, it takes the second list
element as written and passes it along as the value of the quote. Here's a more interesting example:

[3] (define y (quote (+ 1 2)))
y
[4] y
(+ 1 2)
[5] _

Now the variable y has been assigned, not just a symbol, but a symbolic expression in the form of a
list. Without the quote, y would have been assigned the value of this list, namely 3.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 13

Quoting is so common that the function read , which parses input before handing it over to EVAL,
recognizes a convenient shorthand: a single quote ' placed in front of an expression quotes the
expression. That is, 'done is treated the same as (quote done), and the statement [3] above could
equally have been entered:

[3] (define y '(+ 1 2))

with exactly the same effect.
Quoting in XLisp is similar to quoting in English, as illustrated by the neat example I read in a book long
ago:

Chicago is a windy city; "Chicago" is a seven-letter word.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 14

3. LAMBDA
Procedures are created using the keyword lambda—for example:

[1] (define square (lambda (x) (* x x)))
square
[2] _

Here the symbol square is introduced into the global environment with a value resulting from the
expression (lambda (x) (* x x)). The keyword lambda tells the Evaluator that a procedure is being
created. Immediately following the lambda is the formal argument list: in this case, there is a single
argument represented by the symbol x. Following the argument list is a sequence of one or more
expressions to be evaluated when the function is invoked: the value of the last of these expressions will
be the value the procedure returns.
The procedure square can now be invoked the same as any built-in XLisp function:

[2] (square 10)
100
[3] _

Here's how the Evaluator arrives at this result. It notices that square is defined as a procedure, with a
single formal argument x. It creates a nested environment in which the formal argument, x, is bound to
(i.e., assigned) the value of the actual argument 10. Then the body of the procedure is evaluated in this
environment. Here the body consists of the single expression (* x x). x might have a global value,
but it is the local value that is used; the value 100 results from the multiplication, and is returned as the
value of (square 10).
Procedures capture the local environment in which they are created; this allows them to hold local
state. Here is a procedure of no arguments that simply returns the number of times it's been called:

[3] (define how-many-times
(let ((count 0))

(lambda ()
(set! count (+ count 1))
count)))

how-many-times
[4] (how-many-times)
1
[5] (how-many-times)
2
[6] _

The symbol how-many-times is assigned the value of the lambda expression, which is a function of no
arguments that increments the local variable count and then returns the incremented value. count is
defined in a local environment seen only by the created procedure; no other occurrence of count can
possibly refer to the same datum:

[6] (define count 100)
count
[7] (how-many-times)
3
[8] count
100
[9] _

The mechanism here is similar to the use of static locals in a C function, to retain state across
invocations.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 15

Procedures are first-class data objects that can be passed as arguments and returned as values. As a
simple illustration, we define a procedure one-upper that takes a numerical function like square and
returns a "one-upping" function that always returns a value 1 larger.

[9] (define one-upper (lambda (f)
(lambda (x)

(+ (f x) 1))))
one-upper
[10] _

Here one-upper is defined as a procedure taking a single argument f which represents a numerical
function. The value returned by one-upper is the value of the lambda expression (lambda (x) ...),
that is, a function of a single argument x that computes a value. The value it computes is given by the
expression (+ (f x) 1), which is the sum of 1 and the result of applying the given function f to x. We
can use one-upper to transform our square procedure into a procedure that computes 1 more than
the square of its argument:

[10] (define sq++ (one-upper square))
sq++
[11] (sq++ 10)
101
[12] _

If the newly-created one-upping procedure is going to be used only once, there is no need to assign it
to a variable with define: it can be created anonymously and used in place:

[12] ((one-upper sqrt) 64)
9
[13] _

Here we see an illustration of the recursive nature of list evaluation: the first list element is itself a
procedure call that evaluates to a procedure (namely, the one-upper of the square root procedure); that
procedure is then applied to the value of the second element, which is the constant 64.
A more complicated example of transforming one procedure into another is the following, which I've
had occasion to use in Numerical Analysis work. We define a procedure make-counting-version that
takes, as its argument, any function like square or sqrt that computes numerical values, and returns a
new version of that function which keeps track of the number of times it's been called:

[13] (define make-counting-version
(lambda (function)

(let ((count 0))
(lambda (x)

(cond ((number? x) (set! count (+ count 1))
(function x))

((eq? x 'count) count)
((eq? x 'reset!) (set! count 0))
(else 'huh?))))))

make-counting-version
[14] _

The special form cond is a powerful conditional that presents a number of "phrases", each as a list. In
each phrase, the first element is evaluated—if the result is false, then we proceed immediately to the
next phrase. When a phrase is encountered whose first element is true (the final else always counts
as true), then the remaining expressions in that phrase are evaluated sequentially and the value of the
final expression is immediately returned as the value of the cond.
Thus, make-counting-version is a procedure of a single argument, function, which is presumed to
take a numerical argument and return a numerical value. As in the example of how-many-times
above, we create a local counter for use of the procedure we return—that procedure being created by
the (lambda (x) ...) appearing inside the nested environment of (let ((count 0)) ...).

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 16

The function we return takes its argument x and first asks if x is a number. If it is, then we increment
the counter and return the value that function would have returned. But we allow the caller to supply
non-numerical values: the symbolic argument 'count prompts us simply to return the counter value,
and the symbolic argument 'reset! resets the counter. Any other type of argument is unexpected and
provokes the response 'huh?.

[14] (define csq (make-counting-version square))
csq
[15] (csq 4)
16
[16] (csq -9)
81
[17] (csq 'count)
2
[18] (csq 'count)
2
[19] (csq 5)
25
[20] (csq 'count)
3
[21] (csq 'reset)
huh?
[22] (csq 'reset!)
0
[23] (csq 'count)
0
[24] _

3.1 Creation and manipulation of Lists
The simplest way to create a list is with the procedure list, that takes any number of arguments and
returns a list of those arguments:

[1] (define example-list (list 'a 100 "George"))
example-list
[2] example-list
(a 100 "George")
[3] _

XLisp has built-in functions first, second, third, and fourth for extracting the early elements of any
list:

[3] (second example-list)
100
[4] _

For historical reasons, the name car is often used in place of first:
[4] (car example-list)
a
[5] _

The nth element of a list (0-based indexing) can be extracted using the function list-ref:
[5] (list-ref example-list 2)
"George"
[6] _

One can extract the remainder of a list after removing the first element by using the function rest:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 17

[7] (rest example-list)
(100 "George")
[8] (rest (rest example-list))
("George")
[9] _

For historical reasons, rest is commonly known by the synonym cdr—pronounced "could'-er"). Many
recursive procedures involve "CDRing" down a list, as for example the following which counts the
number of elements in a list:

[9] (define length-of-list
(lambda (L)

(print L)
(if (null? L)

0
(+ 1 (length-of-list (rest L))))))

length-of-list
[10] _

This just says that if the given list, L, is empty (that is, a null list), then the length is 0; else, the length
is 1 more than the length of the rest of the list. We've inserted the (print L) statement just so we can
see how this works when we call it:

[10] (length-of-list example-list)
(a 100 "George")
(100 "George")
("George")
()
3
[11] _

The function length-of-list calls itself recursively, each time on the whittled-down sublist that
remains after removing the first element. The printed output shows this. Finally the list is reduced to
NIL—that is, the empty list ()—and the procedure simply returns 0. This returned value is handed
back up the ladder to previous invocations that add 1 to it, and the final result—3—is printed by the
READ-EVAL-PRINT loop in the usual way.
The built-in function length returns the length of any list, without printing out its argument as above.

3.1.1 Building up lists with CONS
One can use the procedure cons to add elements onto the front of a list:

[11] (cons 'foobar example-list)
(foobar a 100 "George")
[12] _

Using car, cdr, and cons together, we can write our own version of the standard function reverse that
takes a list and makes a new list with the same elements in reverse order. It's convenient to start with a
"helper" function that takes two lists as its arguments, and peels elements off the front of the first list
while pasting them onto the front of the second:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 18

[12] (define helper
(lambda (old-list new-list)

(if (null? old-list)
new-list
(let ((element (car old-list)))

(helper (cdr old-list) (cons element new-list))))))
helper
[13] _

Notice the recursive action of helper: if old-list is not empty, it extracts its first element using car
(or first), and then calls itself with old-list replaced by the cdr (rest) of its previous value, and
new-list replaced by its previous value with element CONSed onto the front of it. All we have to do
now is start up the target list initially empty, i.e., with old-list initialized to NIL:

[13] (define list-reversed
(lambda (L)

(helper L nil)))
list-reversed
[14] (list-reversed example-list)
("George" 100 a)
[15] _

3.1.2 Concatenating lists
The built-in procedure append takes any number of argument lists and returns their "concatenation":

[15] (append '(a b c) '(1 2 3 4 5) '("Harry" "Fred"))
(a b c 1 2 3 4 5 "Harry" "Fred")
[16] _

None of the functions described so far alters the argument lists: new lists are always created and
returned. There are so-called "destructive" list functions that do modify their arguments; their names
end in the exclamation mark ! as a warning. For example, the destructive version of append is
append!—it actually splices the lists in place.

3.2 Procedure definition in XLisp
The special form define allows us to replace a procedure definition like

[1] (define square (lambda (x) (* x x)))
square
[2] _

with the following equivalent construction:
[2] (define (square x) (* x x))
square
[3] _

define, in looking at its first argument, sees not a symbol but rather the expression (square x),
which has the appearance of a procedure call. Being intelligent, define infers that a procedure named
square is being defined, and supplies the lambda implicitly.
This process is analogous to the defining mechanism used in C, where a variable is declared by using
it in an expression that evaluates to a known type. For example,

int (*Func)(double, int);

declares Func to be a pointer to a function taking a double and an int as arguments and returning an
int as value. Likewise,

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 19

[3] (define ((one-upper f) x)
(+ (f x) 1))

one-upper
[4] _

declares one-upper to be a function that takes an argument f and returns a function that takes an
argument x. Nothing here constrains the data type of f or x, but the procedure body—(+ (f x) 1)—
won't work if f isn't a function and x an argument it can act upon.
On examining the definition in [3], you may come to find it more transparent than the equivalent
definition given earlier in terms of lambda expressions:

(define one-upper (lambda (f)
(lambda (x)

(+ (f x) 1))))

The lambda form is actually more flexible, because it allows us to insert local environments in front of
it, as in the earlier example
(define how-many-times

(let ((count 0))
(lambda ()

(set! count (+ count 1))
count)))

Trying to do the same thing without explicitly using lambda is tricky; for example
(define (how-many-times)

(let ((count 0))
(set! count (+ count 1))
count))

recreates the local variable count each time the procedure is entered; the return value is always 1. The
better attempt:

(let ((count 0))
(define (how-many-times)

(set! count (+ count 1))
count))

fails because the procedure how-many-times is embedded in the same nested environment as count,
and disappears as soon as we exit the let. But the following works:

[4] (define how-many-times)
how-many-times
[5] (let ((count 0))

(define (foo)
(set! count (+ count 1))
count)

(set! how-many-times foo))
#<Procedure FOO>
[6] _

Statement [4] introduces the symbol how-many-times into the global environment, without bothering to
give it a value. (XLisp gives it the default value NIL; other lisps mark it explicitly as unassigned or
"unbound". I used to enjoy one such interpreter that would respond to my using the undefined symbol
FRANKENSTEIN with the error message "FRANKENSTEIN UNBOUND".)
Statement [5] proceeds as above to define a local function—now called foo—that lives in a private
environment with its local data count. foo, like count, will go out of scope as soon as we exit the
let—hence, before exiting, we assign the value stored in foo to the globally visible how-many-times.
The value assigned using the set! is what XLisp prints as the value of the let.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 20

Both styles of procedure definition—with and without the explicit lambda —have extensions to allow
optional arguments and a variable number of arguments. XLisp borrows additional syntactical
extensions from Common Lisp that make these features especially convenient, and these are
described and illustrated now.

3.2.1 Optional, rest, and keyword arguments
Optional arguments can be specified using &optional. For example,

[6] (define (foo a b &optional (c 17))
(list a b c))

foo
[7] _

defines foo as a function taking two required arguments—a and b—and an optional argument c that
has a default value of 17. Since foo simply returns its arguments in a list, it is easy to see by
experiment what those arguments are:

[7] (foo 10 20)
(10 20 17)
[8] (foo 10 11 12)
(10 11 12)
[9] _

Any number of arguments can follow &optional; here's an example using lambda explicitly:
[9] (define bar (lambda (x &optional (y 10) z (w "yes"))

(list x y z w)))
bar
[10] _

Here bar has a required argument, x, and three optional arguments, y, z, and w. y and w have
specified defaults of 10 and "yes" respectively; no default has been stipulated for z which accordingly
defaults to ()—i.e., NIL. Thus:

[10] (bar 1)
(1 10 () "yes")
[11] (bar 1 2 3)
(1 2 3 "yes")
[12] _

Procedures with a variable number of arguments can be defined using &rest, as in the example:
[12] (define (foobar x y &rest z)

(list x y z))
foobar
[13] _

The meaning here is that foobar may be invoked with any number of arguments greater than or equal
to 2, since the first two arguments—x and y—are required. If there are more than two arguments when
foobar is called, all the "extra" ones will be collected into a list and that list will be bound to the &rest
argument, z. Thus:

[13] (foobar 1 2)
(1 2 ())
[14] (foobar 1 2 3)
(1 2 (3))
[15] (foobar 1 2 3 4 5)
(1 2 (3 4 5))
[16] _

The built-in procedure list could be succinctly redefined using &rest as (lambda (&rest L) L).

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 21

&optional arguments can coexist with the single &rest argument, as long as the latter comes at the
end of the argument list.
Another very useful extension allows non-positional keyword arguments, which are prefaced in the
argument list by &key. Consider the following example:

[16] (define (page &key (color 'white) (width 8.5) (height 11))
(list color width height))

page
[17] _

Defaults are specified as with &optional; likewise here a value of NIL is used if no default is given.
But here we can override the defaults in an order-independent way, by using the &key variable name
preceded by a colon as in these examples:

[17] (page)
(white 8.5 11)
[18] (page :height 17)
(white 8.5 17)
[19] (page :width 4 :color 'grey)
(grey 4 11)
[20] _

This arrangement is extremely convenient for functions that take many arguments having natural
default values. Having to remember the order of numerous arguments is a difficulty we hereby avoid;
and only the arguments that vary from their defaults need be specified at all. The use of the keyword
makes the invocation self-documenting.
&key can be used in conjunction with &optional provided &key comes last. &key cannot be used with
&rest, each needing to come last if used at all.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 22

4. XLISP FILE I/O
XLisp's facilities for reading and writing files are based on C's: one can work with text or binary files; in
the latter case, byte order can be controlled.
We'll focus on output in what follows, and begin with standard printing functions display, write, and
format.
Display and write each take a single required argument—the value to be printed—and an optional
argument which is the output port to which the printing is done. This output port, if omitted, defaults to
STANDARD-OUTPUT:

[1] (display "Hello")
Hello
#t
[2] (write "Hello")
"Hello"
#t
[3] _

In each case, the first line of output results from the action of the procedure called; the second line (#t)
is the value returned by the procedure and printed by the READ-EVAL-PRINT loop in the standard
way.
Notice that write outputs the string with the double-quotes. Generally, display is the right choice for
output that people will read; write attempts to structure its output so that the object printed could be
reconstructed if read back in using read.
XLisp's format is a much-simplified version of the Common Lisp procedure that serves the purpose of
C's printf. The first, and required, argument is either #t, #f, or an output port. #t is used to have the
same effect as specifying *STANDARD-OUTPUT*. #f means that printing will be done to a (newly-
allocated) string, which is returned as the value of the format call.
The second, also required, argument is the format string itself, analogous to printf's format string.
The special formatting character, serving the same purpose as printf's %, is the tilde ~. XLisp's
format recognizes these constructs:

Argument Definition
~A print the next argument as with DISPLAY
~S print the next argument as with WRITE
~X print the integer argument in hex, using 8 hex digits
~% print a new line
~& print a new line if not at the beginning of a line
~~ print a ~ (tilde)

 Table 3

For example:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 23

[3] (define greeting "Howdy!")
greeting
[4] (format #t "using DISPLAY, it's ~A~%using WRITE, it's ~S"

greeting greeting)
using DISPLAY, it's Howdy!
using WRITE, it's "Howdy!"
()
[5] _

The final NIL is the value returned by format.
File I/O is adequately described in that section of the XLisp Manual: the same flexibility offered by C is
in evidence. For example:

[5] (define p (open-output-file "foo.txt"))
p
[6] p
#<File-stream #x1d212e0:476a10>
[7] (port? p)
#t
[8] _

In [5] we open a text output file named "foo.txt". [6] shows that the value returned by the call is a File-
stream—something like a file pointer in C. [7] shows that p is of type port. The following sequence can
now be used to write to the newly-created file:

[8] (display "Here's a sentence!" p)
#t
[9] (newline p)
#t
[10] (format p "-1 in hex is ~X~%" -1)
()
[11] (close-port p)
()
[12] _

If we now examine the file "foo.txt", we discover that it contains these lines:
Here's a sentence!
-1 in hex is ffffffff

The same effect could have been achieved using the procedure (call-with-output-file str
proc)—here str is a string that names the output file to create, and proc is a procedure taking one
argument (which will be a port):

[12] (call-with-output-file
"foo.txt"
(lambda (p)

(display "Here's a sentence!" p)
(newline p)
(format p "-1 in hex is ~X~%" -1)))

#t
[13] _

Notice that the proc argument is created explicitly in place using lambda; the single argument p is just
the port which results from opening the file. What's nice here is that the port is closed automatically
when call-with-output-file completes.
There doesn't happen to be a call-with-append-file, which might be convenient; here's how one
could be written to work in the manner shown above:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 24

(define (call-with-append-file str proc)
(let ((p (open-append-file str)))

(if (not (port? p))
'error-opening-file!
(let ((result (proc p)))

(close-port p)
result))))

There is another kind of output stream that is sometimes useful: instead of being associated with an
output file, it references an in-memory extensible string. See the XLisp Manual under "String Stream
Functions". The call

(define s (make-string-output-stream))

creates a string-output-stream and assigns it to the symbol s. Now s can be used as an output port,
and will receive whatever is written to it. The call

(define str (get-output-stream-string s))

extracts the output-stream string from s and binds it to str.
This is a little like using sprintf() in C to write formatted output to a character array, a notable
difference being that in C the array doesn't just grow dynamically to accommodate its input!

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 25

5. XLISP OBJECT SYSTEM
XLisp provides a single-inheritance Object System inspired by Smalltalk. We'll illustrate here a few of
its features; more details can be found in the XLisp Manual.
Here's a definition of a class of two-dimensional geometric points:

[1] (define-class point
(instance-variables x y))

#<Class:point #x1618c94>
[2] _

(The return value is a printed-representation of the point class; the hex number (prefaced in XLisp
with #x) is an internal address.)
This lets us create point objects by sending the point class the message 'new:

[2] (define p1 (point 'new))
p1
[3] _

Generally, sending a message to an object (or a class) is written in the same syntax as a procedure
call, with the object (or class) occupying the procedure position (first list element) and the first
argument being the message which is typically a quoted symbol. The message 'new, sent to a class,
always creates a new object instance belonging to that class. Here we've created a new point object
and bound it to the symbol p1.
All objects respond to the 'show message by displaying their internals (I give an abbreviated version
below):

[3] (p1 'show)
Instance variables:

x = ()
y = ()

[4] _

We need to write new "methods" to allow setting of the instance variables. For example:
[4] (define-method (point 'set-x! value)

(set! x value))
set-x!
[5] (define-method (point 'set-y! value)

(set! y value))
set-y!
[6] _

Notice that inside the body of a method definition, instance variables can be referred to by name.
Now we can establish coordinates for our point:

[6] (p1 'set-x! 3)
3
[7] (p1 'set-y! 4)
4
[8] (p1 'show)
Instance variables:

x = 3
y = 4

[9] _

Other methods can be added as required: for example, one to compute the distance of a point from the
origin (0, 0) according to the formula sqrt(x^2 + y^2):

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 26

[9] (define-method (point 'distance-from-origin)
(let ((xsq (* x x))

(ysq (* y y)))
(sqrt (+ xsq ysq))))

distance-from-origin
[10] _

The distance of p1 from the origin = sqrt(3^2 + 4^2) = sqrt(9 + 16) = sqrt(25) = 5:
[10] (p1 'distance-from-origin)
5
[11] _

Note from statement [3] above that a newly created point doesn't have numerical coordinates (the
instance variables are initialized to NIL); this would cause the 'distance-from-origin method to fail
if applied to a new point. There is a standard way to customize the initialization of new objects: override
the default 'initialize method as illustrated here:

[11] (define-method (point 'initialize &optional (xval 0) (yval 0))
(set! x xval)
(set! y yval)
self)

initialize
[12] _

The symbol 'self is bound, within the body of an object method, to the object itself; the 'initialize
method must always return the initialized object as value, hence the final line after the set!
statements. Now we can pass to the class method 'new the same arguments we want it to pass to the
'initialize method for the newly created instance:

[12] (define p2 (point 'new -1 2))
p2
[13] (p2 'show)
Instance-variables:

x = -1
y = 2

[14] _

Since we wrote our 'initialize method with optional arguments, omitting explicit initializing data is
safe:

[14] (define p3 (point 'new))
p3
[15] (p3 'show)
Instance-variables:

x = 0
y = 0

[16] (p3 'distance-from-origin)
0
[17] _

This brief introduction has made no mention of class variables or inheritance (other than the use of
methods 'new and 'show which are inherited from superclasses). Our goal was simply to illustrate the
syntax of class and object creation, method definition, and message passing.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 27

6. NAMED LET
The general form of let given in the XLisp Manual—under "Binding Forms"—is:

(let [name] bindings body)

where bindings has the form ((variable init) ...), and body is any sequence of S-Expressions to
be evaluated sequentially, the value of the last being the value returned by the let.

Although we haven't mentioned it up till now, the let can be named by placing an optional symbol
between the let and the bindings. To explain the meaning and use of this construct, we begin by
noting that let is equivalent to invocation of an anonymous procedure. Consider the following
example:

[1] (let ((x 5) (y 10))
(+ x y))

15
[2] _

The body of the let—here the single S-Expression (+ x y) — is evaluated in a local environment with
symbols x and y, in which x has been bound to 5 and y to 10. The result of the evaluation is 15.
The expression in [1] is exactly equivalent to the following:

[2] ((lambda (x y) (+ x y)) 5 10)
15
[3] _

Notice that in [2] we have a list whose first term is the lambda expression (lambda (x y) (+ x y)).
Evaluating this expression produces a procedure that is then applied to the arguments 5 and 10. How
is the procedure applied to the arguments? First, a local environment is created containing the formal
arguments x and y. Then the formal arguments are bound to the actual arguments—5 and 10—and
then the body of the lambda expression—(+ x y)—is evaluated in this environment. This is exactly
the action of the let in [1]!
Thus, let creates a procedure whose formal arguments are the VARIABLEs in its bindings list. The
actual arguments are the values of the INIT expressions in the bindings list. Applying the procedure to
the arguments means evaluating the body in this environment.
The procedure, as in [2] above, is anonymous (that is, unnamed). This means there's no way for the
implied procedure to call itself recursively. The point of the named-let construction is to give the
implicitly-defined procedure a name so that it may refer to itself.
For example:

[3] (let loop ((i 1))
(if (> i 3)

'done
(begin

(print i)
(loop (+ i 1)))))

1
2
3
done
[4] _

Here the procedure created by the let is named loop. It has a formal argument, i, and the body
returns 'done if i is greater than 3. If i is not greater than 3, i is printed and loop is called recursively
with i incremented by 1. This is equivalent to the following:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 28

[4] (let (loop)
(set! loop (lambda (i)

(if (> i 3)
'done
(begin

(print i)
(loop (+ i 1))))))

(loop 1))
1
2
3
done
[5] _

Here the let creates a local environment in which the symbol loop is visible (though initially unbound).
loop is then assigned (by the set!) the value of the lambda expression that follows. Inside the body of
this lambda expression the symbol loop occurs—why isn't this circular reasoning? Simply because the
value of loop isn't required until the lambda procedure is run, which first occurs in the invocation (loop
1) that follows the set!. After the set!, loop is bound to the lambda procedure itself.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 29

7. MULTIPLE VALUES
XLisp borrows from Common Lisp the ability of a procedure to return multiple values. This is potentially
more efficient than returning a list of values—the list must be CONSed together and then destructured
at the receiving end. One can create multiple values using the procedure values, that takes any
number of arguments and returns them all (as values) in the same order:

[1] (values 1 2 3)
1
2
3
[2] _

One can also use the functions values-list that takes a list as its single argument and then returns
all the list's elements as the multiple values:

[2] (values-list '(a b c))
a
b
c
[3] _

Of course to make any use of this one needs forms that capture multiple values. The simplest is
multiple-value-set! whose first argument is a list of symbols and whose second argument is any
expression returning the appropriate number of multiple values:

[3] (multiple-value-set! (p q r) (values 10 20 30))
30
[4] p
10
[5] q
20
[6] r
30
[7] _

More useful is the special form multiple-value-bind, whose syntax in the XLisp Manual is given as:
(multiple-value-bind (var ...) vexpr expr ...)

Here (var ...) is the list of symbols to be bound, exactly as in the first argument multiple-value-
set!. The difference is that multiple-value-set!, like set!, looks for its symbols starting with the
innermost enclosing lexical environment and modifies the first instance of the symbol it finds—or,
finding none, adds the symbol to the global environment. multiple-value-bind, on the other hand,
behaves like let: it creates a new nested environment and introduces the symbols there. It is in this
nested environment that the arguments following vexpr are evaluated, sequentially as with let, with
the value of the final expr being the value of the form.
For example:

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 30

[7] (multiple-value-bind (p q r) (values 1 2 3)
(format #t "p = ~A~%" p)
(format #t "q = ~A~%" q)
(format #t "r = ~A~%" r))

p = 1
q = 2
r = 3
()
[8] (list p q r)
(10 20 30)
[9] _

This shows that p, q, r have been defined locally within the scope of the multiple-value-bind, and
that their global values are unaffected (as seen in [8]).

It is possible to return no values whatever, by simply invoking values without any arguments:
[9] (values)
[10] _

This allows us to eliminate the distracting printing of return values from calls that are invoked for
printed output—as for example in the final () that follows the three printed lines produced by [7]. This
() results from the final format call, which returns () as its value, which then becomes the value of
the multiple-value-bind call and which is dutifully printed by the READ-EVAL-PRINT loop in the
standard way. Observe:

[10] (display "Printed Output")
Printed Output
#t
[11] (begin (display "No distractions!") (values))
No distractions!
[12] _

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 31

8. REFERENCES
[1] XLISP: An Object-Oriented Lisp, Version 3.0, David Michael Betz

This is the XLisp Manual referred to in these notes; it is the definitive reference for XLisp.

[2] The Little Schemer, Daniel P. Friedman and Matthias Felleisen

Formerly distributed as The Little LISPer, this volume is a simplified introduction that employs a
question/answer format that facilitates self-pacing. The content is solid, and good insights are
developed through well-chosen examples.

[3] The Seasoned Schemer, Daniel P. Friedman and Matthias Felleisen

A sequel to The Little Schemer.

[4] Structure and Interpretation of Computer Programs, Harold Abelson and Gerald Jay Sussman,
with Julie Sussman
A classic computer science text, now in its second edition, that uses Scheme as a vehicle for
illustrating powerful and fundamental ideas.

[5] Scheme and the Art of Programming, George Springer and Daniel P. Friedman

An excellent text for learning, not only the mechanics of Scheme programming, but the idiom of
thought as well. The well-developed illustrations demonstrate the expressive power of the language.

[6] The Scheme Programming Language, Second Edition, R. Kent Dybvig

A reference book that covers ANSI Scheme. XLisp is not identical to Scheme; none-the-less, this
volume can be helpful.

[7] XLisp Tutorial: an Introduction for C Programmers, Matthew Halfant

This manual. All lisps exploit recursion, so the self-reference is thematic.

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 32

9. INDEX
Words in bold are XLisp commands

&
&key .. 21
&optional .. 20
&rest.. 20

’
’count... 16

A
append ... 18

C
car .. 16
cdr.. 17
class ... 26
cond ... 15
cons .. 17
count .. 14

D
data type

Boolean.. 6
character .. 6
class ... 6
integer .. 5
number... 5
object ... 6
procedure ... 6
string.. 6
symbol ... 6
vector ... 6

define ... 8
display ... 22

E
environment

global ... 9, 14
local ... 14
nested... 9
outer... 9

F
first ..See car
Flow of control functions

if 8
format .. 22, 31
fourth... 16

function ..15

I
if 8
Input/Output functions

display ..22
format ...22, 31
read...13
write ...22

K
keyword

lambda..14

L
lambda ...14
length ...17
let 9
let*..11
list...6, 16
List functions

append ..18
car...16
cdr ..17
cons ..17
destructive ..18

append! ..18
first ...16
fourth..16
length..17
list...16
list-ref ...16
rest..17
reverse ..17
second ..16
third ..16

list-ref...16

M
multiple-value-bind ...30
multiple-value-set!...30

P
print ...10
proc ..23
procedure ..14

Q
quote...12

2-MAY-97 VM LABS CONFIDENTIAL PROPRIETARY 33

R
read.. 13, 22
reset ... 12
rest.. See cdr
reverse ... 17

S
second .. 16
S-Expression .. 6, 28
sqrt... 15
str... 23
symbol table ... 9

global ... 9

T
third ...16

V
values ...30
values-list ...30

W
write ...22

Z
zero?...9

