
V M L A B S

The Hitchhiker’s
Guide to

An Overview of the
VM Labs Development System

Revision 0.87
12-Feb-01

Copyright  1997-2001 VM Labs, Inc. All rights reserved.

NUON™, NUON Media Architecture™, and the logo are trademarks of
VM Labs, Inc.

All other product names and trademarks mentioned within this document are
the property of their respective owners.

Proprietary and Confidential to VM Labs, Inc.

The information contained in this document is confidential and proprietary to
VM Labs, Inc., and is provided pursuant to a Non-Disclosure agreement
between VM Labs, Inc., and the recipient. It may not be distributed or copied
in any form whatsoever without the express written permission of VM Labs.

The information in this document is preliminary and subject to change at any
time. VM Labs reserves the right to make changes to any information
described in this document.

Note: This document is continually updated to reflect the current state of the
NUON development system hardware and software. If you have a version
that is more than five or six months old, it is likely out of date.

Please address comments or report errors to Mike Fulton at VM Labs
(EMAIL: mfulton@vmlabs.com).

VM Labs, Inc.
520 San Antonio Road
Mountain View, CA 94040

Tel: (650) 917-8050
Fax: (650) 917-8052

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE I I I

Table of Contents

1. INTRODUCTION .. 1-1

1.1 Unpacking The Development System... 1-1

1.2 What’s in the Hitchhiker’s Guide?.. 1-2

1.2.1 Deletions In This Revision.. 1-2

1.2.2 Online Versions of the Hitchhiker’s Guide...................................... 1-2

1.3 “Merlin” –vs– “NUON” –vs– “Project X” 1-3

1.3.1 Common Acronyms .. 1-3

1.4 “Aries” –vs– “Oz”... 1-3

2. VM LABS DEVELOPER SUPPORT .. 2-1

2.1 Contacting Developer Support ... 2-1

2.1.1 Sending E-Mail to Developer Support... 2-1

2.1.2 Response Time ... 2-2

2.1.3 Contacting Non-Support Personnel at VM Labs.............................. 2-2

2.2 Developer Support Online .. 2-2

2.2.1 Developer Web Site.. 2-2

2.2.1.1 Other VM Labs Websites ... 2-3

2.2.2 Developer Support FTP Site ... 2-3

2.2.2.1 Legacy FTP Site .. 2-4

2.2.2.2 Downloading Files From the FTP Site...................................... 2-4

2.2.2.3 Uploading To The FTP Site.. 2-5

2.2.3 Developer Newsgroups... 2-5

2.2.3.1 Configure Your Newsgroup Reader Software........................... 2-6

2.3 Obtaining The NUON SDK.. 2-6

2.3.1 File Encryption .. 2-7

2.3.2 DES Encryption ... 2-7

2.3.2.1 Decrypting the SDK File.. 2-7

2.3.3 Installing the SDK.. 2-7

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE IV

2.4 Obtaining Other Files... 2-8
2.4.1 Decrypting Other Files... 2-8

2.4.2 Personalized Downloads .. 2-8

2.4.3 Obtaining Technical Notes ... 2-8

2.5 Things to Keep in Mind About Developer Support 2-8

2.5.1.1 “We are both under non-disclosure” ... 2-9

2.5.1.2 “I know it sounds stupid, but please try it anyway?” 2-9

2.5.1.3 RTFM: Read the fine manual ... 2-9

2.5.1.4 “The support guy’s asking me too many questions, instead of
answering mine!”..2-10

3. NUON DEVELOPMENT SYSTEM REVISIONS 3-1

3.1 Revision 4 System ... 3-1

3.2 Revision 5 System ... 3-2

3.3 Development System Expansion Cards .. 3-2

4. NUON A/V CONNECTIONS... 4-1

4.1 Connecting NUON to your TV or monitor....................................... 4-1

4.1.1 NTSC & PAL ... 4-2

4.1.2 Building your own video cable.. 4-2

4.1.3 Connecting NUON to Your Stereo .. 4-2

4.1.4 DVD Movie Playback on the Development System.......................... 4-3

5. CONNECTING THE NUON CONTROLLER...................................... 5-1

5.1 Connecting A Production NUON Controller 5-1

5.2 Controller Prototypes & The Interface Box..................................... 5-2
5.2.1 Interface Box Notes.. 5-3

6. CONNECTING NUON & YOUR HOST PC... 6-1

6.1.1 Connecting as part of an existing network 6-1

6.1.2 Connecting Directly ... 6-1

6.1.3 NUON Serial Port.. 6-2

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE V

6.2 Communicating With NUON... 6-2
6.2.1 Do I have TCP/IP?... 6-2

6.2.2 Network Configuration... 6-2

6.2.3 NUON’s IP Address ... 6-3

7. NUON BOOT/BIOS ROM ... 7-1

7.1 Built-In System Configuration Program.. 7-1

7.2 Boot ROM Versions & Demo Programs .. 7-1

7.3 Updating Your Firmware... 7-2

7.3.1 EZ Update ... 7-2

7.3.2 Step-By-Step Trouble-Shooting Update... 7-2

8. THE DEBUG STUB ... 8-1

8.1 Debug Interface Card... 8-1

8.2 Updating The Debug Stub .. 8-1

8.3 Communicating With The Debug Stub .. 8-2

8.3.1 PPC860 Stub Menu.. 8-3

8.4 Changing The IP Address Via The Stub .. 8-3

8.4.1 Using The Serial Port Menu ... 8-3

8.5 Changing NUON’s MAC Address.. 8-5

8.5.1 Selecting A New MAC Address ... 8-6

8.6 Your Host PC’s IP Address.. 8-6

8.6.1 Using A Static IP Address .. 8-6

8.6.2 Using DHCP.. 8-7

8.6.2.1 When No DHCP Server Is Available .. 8-7

8.6.3 Using Multiple Network Cards ... 8-7

9. NUON DEVELOPMENT TOOLS... 9-1

9.1 System Requirements ... 9-1

9.1.1 Which Version Of Windows? .. 9-1

9.1.1.1 Windows 95... 9-1

9.1.1.2 Windows 98... 9-2

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE V I

9.1.1.3 Windows ME... 9-2

9.1.1.4 Windows NT ... 9-2

9.1.1.5 Windows 2000... 9-2

9.2 Tools Installation .. 9-2

9.3 NUON SDK Environment Variables.. 9-3

9.3.1 MD_PORT... 9-3

9.3.2 VMLABS.. 9-3

9.3.3 PATH... 9-3

9.3.3.1 Conflicts With Other Tools .. 9-4

9.3.4 DJGPP .. 9-4

9.4 MS Windows & Environment Variables.. 9-4

9.4.1 Setting Environment Variables Under Windows 2000 9-4

9.4.2 Setting Environment Variables Under Windows 95/98/ME.............. 9-5

9.4.3 Things To Remember.. 9-5

9.5 Windows Cross-Platform Issues... 9-5

9.6 Making the tools work.. 9-6

10. NUON SDK OVERVIEW, BY CATEGORY10-1

10.1.1 C/C++ Compiler...10-1

10.1.2 Assembler ...10-2

10.1.3 Linker ...10-2

10.1.4 Debugger..10-2

10.1.5 Object Module Utilities ...10-2

10.1.6 Miscellaneous Tools..10-2

10.1.7 C & C++ Include Files ...10-3

10.1.8 Library Files...10-3

10.1.9 Sample Code...10-4

10.1.10 Tutorials...10-4

10.1.11 Interface Card & Debug Stubs..10-4

10.1.12 BIOS ROM Images ...10-4

10.1.13 Documentation ...10-4

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE V I I

10.1.14 3D Studio MAX Plug-Ins ..10-5

10.1.15 Photoshop Plug-Ins ..10-5

11. NUON SDK TOOLS MINI COMMAND REFERENCE11-1

11.1 C/C++ Compiler ..11-1

11.1.1 Paths ..11-4

11.1.2 NUON C/C++ Compiler Notes ...11-5

11.1.2.1Command Line Options ..11-5

11.1.2.2Function Calling Conventions ...11-6

11.1.2.3Obsolete NUON-Specific Options...11-7

11.1.2.4Other Conventions ..11-7

11.1.3 Additional Documentation...11-7

11.2 Llama Assembler...11-7
11.2.1 Paths ..11-10

11.2.2 Additional Documentation...11-10

11.3 Linker ..11-10

11.3.1 Paths ..11-11

11.4 GMAKE Utility..11-12

11.4.1 Additional Documentation...11-13

11.5 Puffin Debugger...11-13

11.5.1 Puffin & Tcl/TK ..11-14

11.5.2 NUON Processor Emulation ...11-14

11.5.3 Additional Documentation...11-14

11.6 MLOAD Utility..11-15
11.6.1 MLOAD Command Options ..11-15

11.6.2 Using MLOAD For Debugging..11-18

11.6.2.1Monitor Processor Exceptions Option....................................11-18

11.6.2.2Register Dump Option ..11-19

11.6.2.3Deciphering The Register Dump ...11-19

11.6.2.4Disassembly From Memory ..11-20

11.6.2.5Memory Dump ...11-20

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE V I I I

11.6.2.6Other Useful Programs..11-21

11.7 MTRACE Utility ...11-21

11.7.1 Presentation Engine Tasks ..11-21

11.7.2 Output ..11-21

11.8 VMAR Utility...11-22

11.9 VMNM Utility..11-26

11.9.1 VMNM Output Format ..11-27

11.9.2 Symbol Flags ..11-28

11.9.3 Segment Descriptions..11-29

11.9.4 Getting a Symbol Map...11-29

11.9.5 Symbol Names...11-29

11.9.6 Symbol Values, Object Modules, & The Linker11-30

11.10 COFFDUMP Utility...11-31

11.10.1 COFFDUMP Output ..11-31

11.10.1.1 Program Section Information..11-31

11.10.1.2 Relocation Information ..11-33

11.10.1.3 Symbol Dump..11-34

11.11 VMSTRIP Utility...11-34

11.12 VMDISASM Utility ...11-35

11.13 VMOCOPY Utility ..11-36

11.13.1 File Format Types ..11-38

12. NUON DEVELOPMENT SYSTEM DOCUMENTATION12-1

12.1 Tools ...12-1

12.2 System & Hardware ..12-2

12.3 Libraries ..12-2

12.3.1 Sample Program Source Code...12-3

13. RUNNING YOUR FIRST PROGRAM ..13-1

13.1 Check your configuration ..13-1

13.2 Your First Sample ...13-2

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE IX

13.2.1 Compiling A Sample Program...13-2

13.2.2 Running The Sample Program...13-3

13.3 Additional Samples..13-4

14. NUON FILE SERVER ..14-1

14.1 File Server Modes ..14-1

14.1.1 File System Server...14-1

14.1.2 Media Server ..14-1

14.2 Debugging & The File Server..14-2

14.3 Client Side — File System Server..14-2

14.3.1 Examples ..14-2

14.3.2 Current Directory ...14-3

14.3.3 Available Functions ..14-3

14.4 Client Side — Media Server ..14-3

14.4.1 More Information To Come...14-4

14.5 Using The File Server Intelligently..14-4

14.5.1 Using The File Server For Debugging...14-4

14.5.2 Using The File Server For Media Access.......................................14-5

14.5.2.1NUON BIOS Media Access –vs– Standard C Library I/O........14-5

14.5.2.2Doing It Right...14-6

15. NUON PROGRAMMING GUIDELINES..15-1

15.1 Memory Usage...15-1

15.1.1 Low BIOS Memory Area ...15-1

15.1.2 High BIOS Memory Area ..15-1

15.1.3 Presentation Engine Memory Area ..15-1

15.2 Runtime Memory Allocation ...15-2

15.2.1 C & C++ Runtime Heap Initialization...15-2

15.2.2 Managing Your Own Heap..15-2

15.2.3 Avoiding Conflicts Between the Heap And Other Memory Usage ...15-3

15.2.3.1Using the COFFDUMP tool to help avoid problems15-4

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE X

15.3 DMA Operations ...15-4
15.3.1 DMA Transfer Size..15-4

15.3.2 Issuing DMA Commands...15-4

15.4 Timers & Interrupts ..15-5

15.4.1 Vertical Blank Interrupt ..15-5

15.4.2 Using the System Timer...15-5

15.5 MLOAD...15-6

15.5.1.1Machine Reset via MLOAD..15-6

15.6 Media Access..15-6

15.7 MPE Usage...15-6

15.8 More ...15-6

16. FAQ FOR NEW DEVELOPERS..16-1

16.1 Communicating With NUON..16-1

16.2 Connections..16-2

16.3 Tools ...16-2

16.4 Libraries ..16-3

16.5 Video ...16-3

16.6 DVD Reading...16-3

16.7 Inter-Processor Communication ...16-4

16.8 Memory Cards...16-4

17. GLOSSARY...17-1

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 1 - 1

1. Introduction

1.1 Unpacking The Development System
Congratulations on becoming a NUON developer. You’ve just received your
development system and have opened up the boxes. What’s next?

The first thing you should do is to make sure that nothing is missing. The tables
below allow you to check off the items that should be included in the package:

Item Check
NUON Development Unit in ATX-style PC case
Documentation Package
(This may not be included if you have received other
NUON development systems from VM Labs in the
past.)

AC Power Cable
DB-9 to DB-9 Serial Cable

Figure 1-1 — Items Included With NUON Development System

Please note that the controller packaged with your development system may be
either a standard production NUON controller or a prototype controller. Each
controller comes with specific other items as shown in the table below.

Item Check
Prototype Controller
Controller Adapter Box
Cable: Controller Adapter Box to NUON
(DB-9 to DB-9 cable with gender adapter)

OR
NUON Game Controller
NUON Controller to USB Connector1 Adapter Cable
(This item may not be included, depending on what
connector style is used on the NUON development
system.

Figure 1-2 — Game Controller Items Included With NUON Development System

1 Some revisions of the NUON development system use a USB style connector for game

controllers, so an adapter cable may be provided. However, it is not an actual USB port, so
do not attach USB peripherals to your NUON development system via this connector or
damage may result.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 1 - 2

1.2 What’s in the Hitchhiker’s Guide?
Chapter 2 will introduce you to some details about VM Labs Developer Support,
such as how to contact support personnel, how to log onto the support FTP site,
and how to download the latest versions of the SDK and other files.

Chapter 3 describes the ports found on your NUON development system and talks
about the differences between different revisions of the system.

In chapters 4 through 6, we’ll walk you through the steps of getting your system
put together and connecting it to your host PC and TV.

Chapters 7 & 8 discuss the system firmware and debugging/communications
interface.

Chapters 9 through 11 will introduce the various tools of the SDK, and provide a
basic reference guide for the tools you’ll most often. Chapter 1 will discuss where
to find more in-depth documentation for the various tools and libraries.

In chapter 13, we demonstrate how to build and execute a sample program, and
help you with trouble-shooting.

Chapter 14 discusses the NUON file server, which can be used for communication
and data transfer between the client program running on the NUON system and the
host PC.

Chapter 15 has a number of programming guidelines which should be observed.

Chapter 16 contains Frequently Asked Questions (FAQ) compiled from developer
inquiries on a broad range of subjects ranging from setup issues to programming.

Chapter 17 provides a basic glossary of terms that you’ll see used often throughout
the NUON developer documentation.

1.2.1 Deletions In This Revision
The Hardware Bug List and Software Bug List sections that came at the very
end of the previous revisions have been removed. It became clear that those lists
should be moved to another place where they could be maintained more efficiently.
That information is now maintained in a separate document.

1.2.2 Online Versions of the Hitchhiker’s Guide
If you are reading this from a printed version of the Hitchhiker’s Guide, then make
sure to check the online documentation section of the VM Labs Developer
Website. The Hitchhiker’s Guide is updated often and a newer version may be
available in Adobe Acrobat PDF format.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 1 - 3

1.3 “Merlin” –vs– “NUON” –vs– “Project X”
Prior to the announcement of the NUON name in October 1998, VM Labs used the
name “Merlin” to refer to both the development system and the underlying
technology. The term “Project X” was also used to refer to the platform in early
press notices and news items.

These terms refer to the same thing as “NUON”. In our documentation, we have
changed most references to “Merlin” but you may still find places we’ve missed.
Therefore, we ask that you please always keep in mind that “NUON”, “Merlin”,
and “Project X” all refer to the same thing.

1.3.1 Common Acronyms
You may find the following acronyms used interchangeably throughout our
documentation:

NDK — This stands for “NUON Developer Kit” and generally refers to anything
in the entire development system, hardware and software.

MDK — Same thing as “NDK” except this is the older usage with “Merlin”
instead of “NUON”.

NDS — This stands for “NUON Developer System” and usually refers specifically
to the hardware portion of the development system.

MDS — Same thing as “NDS” except this is the older usage with “Merlin” instead
of “NUON”.

1.4 “Aries” –vs– “Oz”
Oz is the name used to refer to the MMP-L3A revision of the NUON chip. This is
the original version of the NUON chip that was used in the first generation of
development systems. As would be expected, the Oz revision of the chip had a
number of bugs where something did not work correctly. For the most part, these
bugs were relatively small and could be worked around in software without too
much difficulty.

Aries is the name used to refer to the MMP-L3B revision of the NUON chip. This
is the latest version of the chip used in current versions of the development system
as well as in production hardware. The Aries version fixes most of the bugs from
the Oz revision.

Aries 2 is the name used to the MMP-L3C revision of the NUON chip. It fixes a
few more bugs and has some changes in the external memory interface (for cost
reduction).

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 1 - 4

Aries 3 is the name used to the MMP-L3D revision of the NUON chip, which is
not yet available.

For a time, the tools and libraries in the SDK were designed to create software that
would run on either Aries or Oz systems. In many cases, this required that a
library sacrifice some performance in order to provide code that would work on
both systems. In the case of the audio libraries, separate versions for each chip
revision were required.

As of April 1999, new releases of the SDK will no longer provide libraries or tools
that are designed to be backwards compatible with Oz-based systems. Programs
created with these SDK releases will probably not work right on Oz-based systems.

The Aries 2 and Aries 3 chip revisions does not require any SDK changes.

We have attempted to update development systems using the older Oz chip
revision. If you still have an Oz-based system, please contact VM Labs
immediately to arrange for an updated system.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 1

2. VM Labs Developer Support

2.1 Contacting Developer Support
You may contact the VM Labs Developer support staff via telephone, fax, E-Mail,
or regular mail as follows:

E-Mail: devsupport@vmlabs.com
Phone: +1 (650) 917-8050 (see note below)

Fax: +1 (650) 917-6610 (see note below)
Mailing Address: VM Labs

Attention: Third Party Developer Support
520 San Antonio Rd.
Mountain View, CA 94040-1217

Additional contact information may be found on the VM Labs Developer Support
Website. See section 2.2 below for more information.

2.1.1 Sending E-Mail to Developer Support
One of the best ways to contact developer support is via E-Mail. In order to help
ensure a swift and accurate response, please always try to provide the following
information in your message:

• Your name

• Your company

• The name of your project

• Your return E-Mail address

• Your telephone number (In some cases, our support engineers may decide
that calling you would be more efficient and effective than an E-Mail
reply.)

• As much detail as possible about the problem you are having or the
question you want answered.

Please do not assume that you do not have to include this information because
“they already have it”. You may be correct that someone at VM Labs has this
information, but that will not necessarily be the person that will be responding to
your message. If you leave out this information, it may delay your response.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 2

2.1.2 Response Time
When you send an E-Mail message or fax, our support staff will usually be able to
respond within one business day, at least to acknowledge receipt. Please keep in
mind that holidays and certain special events may sometimes affect response time.

Finally, while we do our best to avoid it, things do occasionally slip through the
cracks. If you do not receive at least an acknowledgement of your inquiry within a
few business days, please try again.

2.1.3 Contacting Non-Support Personnel at VM
Labs

Occasionally, to help resolve a problem, our support engineers may put you into
direct contact with another engineer at VM Labs who is not part of the regular
support team.

In such cases, please keep in mind that non-support personnel are normally quite
busy with their normal everyday assignments. Unlike the support staff, they are
not accustomed to dealing with outside developers on a regular basis and cannot
always devote their complete attention to your problem. They will do their best,
but may not be able to respond as quickly as you would like.

When you contact non-support staff regarding an issue, please do your best to keep
the original support staff member in the communications loop. Please make sure
the support staff receives copies of any correspondence. This will help to avoid
any problems and ensure that confusion is kept to a minimum.

2.2 Developer Support Online
Aside from EMAIL, VM Labs offers a variety of online support services including
a private developer-only website, FTP site, and newsgroups. Each of these
services is discussed later in this section.

2.2.1 Developer Web Site
The VM Labs Developer Support website is located at:

http://developer.vmlabs.com

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 3

The developer website is password protected. Except for a few pages at the top
level, you must have an account to access it. The main page of the website
includes a link to a page where you must fill out and submit a form to request a
new account. Alternately, you may send an EMAIL message containing the same
information requested by the form.

Please note that no accounts may be activated without this process.

Once you have submitted your account request, the information must be validated
before the account can be activated. Assuming there is no difficulty in validating
your information, it typically takes about one business day to activate your
account. However, this depends on individual circumstances and some accounts
may take longer to validate.

All information obtained from the VM Labs Developer Support website is
considered confidential and proprietary to VM Labs, Inc.

2.2.1.1 Other VM Labs Websites

Other websites maintained by VM Labs are open to the public. Information found
on these sites is not considered confidential and may be freely discussed.

The VM Labs corporate website is located at:

http://www.vmlabs.com

The official NUON website for consumers is located at:

http://www.nuon.tv

2.2.2 Developer Support FTP Site
There is an FTP site that goes along with the developer website. This may used to
download files which are available through the website, or it may be used for
developers to send files to VM Labs. The URL is:

ftp://developer.vmlabs.com

To login with the FTP site, please use the same account information as for the
developer web site.

Most developers will only have access to the develop and develop/upload folders
of the FTP site. However, some developers may have a private folder in the
develop/3rdparty folder where they can receive special downloads or send uploads
to VM Labs. This is ordinarily done only when there is a significant amount of
traffic back and forth.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 4

Developers may be given access to other folders on the FTP site as required by
individual circumstance.

2.2.2.1 Legacy FTP Site

Prior to the opening of the developer website, VM Labs maintained a different FTP
site for developers. This URL for this FTP site is:

ftp://204.31.130.4

This FTP site is separate from the one at developer.vmlabs.com, including account
information.

As of this writing, the older site is still active, but access is no longer granted to 3rd
party software developers. Currently, access is granted only to OEMs and 2nd party
companies.

The older FTP site will eventually be phased out. There is no guarantee that all
items made available on the new website will be made available through the older
FTP site as well.

2.2.2.2 Downloading Files From the FTP Site

Always configure your FTP program for a BINARY transfer when downloading
files from the FTP site. With many FTP programs, the default transfer mode is
ASCII, and this may cause changes to the file during transfer.

Please note that while many web browsers have basic FTP support built-in, they
generally do not support the whole range of options that a dedicated FTP program
would have. In particular, they may not allow you to login using your account
information.

If you don’t have a separate FTP program, don’t forget that Windows comes with a
simple console-based FTP client program called “FTP”. It’s not pretty, but it will
serve the purpose.

Simply open a command shell window and enter the command FTP, followed by
the name of the FTP site. For example:

ftp developer.vmlabs.com

. The table below lists the main commands you’ll need.

Windows FTP Program Basic Commands
ASCII Switch to ASCII download mode
BINARY Switch to BINARY download mode
CD <directory> Changes to the specified <directory>

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 5

Windows FTP Program Basic Commands
DIR <specification> Lists files matching the given <specification>
GET <file> Downloads the specified <file> to the current local

directory
HELP [command] By itself, lists available commands. If a particular

command is specified (i.e. “help get”) then more
detailed help on that command is shown.

OPEN <address> Opens the FTP site specified by <address>, which
may be either an IP address or an URL.

PUT <file> Uploads the specified <file> (by default in the current
local directory) to the current directory on the FTP site.

2.2.2.3 Uploading To The FTP Site

To upload a file to the FTP site, first change to the /develop/upload folder (unless
you have been granted access to a different location). In your FTP program, select
“binary” transfer mode (rather than ASCII). Finally, start the upload.

Please note that by default, you will only have write access to the /develop/upload
directory. That means you won’t be able to do anything except upload, not even
get a directory of existing files.

If you get an error message saying “access denied” when you try to upload, there is
a good chance that the cause is simply that a file already exists with the specified
name. The system does not allow you to overwrite an existing file. This may
happen if a previous attempt to upload the file does not succeed. The solution is to
select a new filename and try again.2

After uploading your file, please always remember to send an EMAIL message to
the appropriate parties at VM Labs, including webmaster@vmlabs.com. Make
sure your message includes the filename of the uploaded file. Also include the
filenames for any failed upload attempts so that the Webmaster can remove those
files.

2.2.3 Developer Newsgroups
There is also a newsgroup server that features developer-only message bases. The
URL is:

news://developer.vmlabs.com

Please note that the newsgroup server only maintains private developer-only areas.
There is no danger of the general public reading and responding to messages. You
may feel free to discuss technical issues with VM Labs or with other developers.

2 Unfortunately, there is no facility at this time for resuming an upload.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 6

In general, we would prefer that technical questions be submitted through the
newsgroups rather than EMAIL whenever possible. For one thing, your message
will be seen by all of the developer support staff instead of just one individual.
Your message will probably also be seen by other engineers at VM Labs who may
offer a response. And you might also get a response from another developer.

Of course, if your question includes technical details you cannot discuss with other
developers, you still have the option of sending private EMAIL to the developer
support staff at VM Labs.

2.2.3.1 Configure Your Newsgroup Reader Software

To login with the newsgroup server, please use the same account information as for
the developer website and FTP site.

It is very important that you configure your newsgroup reader software to login
using your account information. If you do not, your reader software may give you
a message such as “access denied” or perhaps another error message that is not
very specific about the cause of the problem.

2.3 Obtaining The NUON SDK
The NUON SDK is available to authorized 3rd party developers for downloading
through either the developer website or the developer FTP Site.

On the website, simply follow the links to the download page, along with any other
instructions shown. This is the preferred method.

On the developer FTP site, or on the legacy FTP site, the SDK files are located in
the DEVELOP/SDK directory. The filename should be something like:

SDK_0326.DES

The exact filename will depend on the SDK revision date and encryption method.

In this example, the “0326” portion of the filename means March 26th. Of course,
this refers to a specific release and is subject to change as newer revisions will have
filenames that indicate other dates. However, the SDK folder will always contain
only the current release.

If you have any doubts about which file is the most recent, you should use the
website rather than the FTP site, as the website will include a text description that
should help you figure everything out.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 7

2.3.1 File Encryption
Most of the files stored on the developer website and FTP site are encrypted in
order to prevent unauthorized access. This includes all of the SDK and related
demo files.

Please note that the encryption method used may change at any time. At any given
time, you can find detailed information about the current setup on the developer
website.

2.3.2 DES Encryption
A “DES” filename extension on a file indicates that the file is DES-encrypted.
You may decrypt such a file using the DES utility, which is also available on the
FTP site at:

TOOLS\DES.EXE

2.3.2.1 Decrypting the SDK File

For a DES-encrypted SDK archive, the command line used for decryption is:

des -3Dk SecretPassword <inputfile> <outputfile>

where SecretPassword must be replaced by the real password, which is provided to
you separately. The inputfile parameter indicates the filename of the encrypted
file. The outputfile parameter indicates the name of the decrypted file that will be
created. For example:

des -3Dk NUON4Ever vm990510.des vm990510.zip

Please note that the command line options and password for the DES utility are
case-sensitive. The command line above specifies that “NUON4Ever” is the
password, opens the VM990510.DES file, and creates the VM990510.ZIP file,
which can then be used with any standard Windows 95 ZIP file tool.

Please note that if you do not specify the output file on the command line, the
output of the DES tool is sent to the standard console output device. The most
likely result is a long stream of garbage characters.

2.3.3 Installing the SDK
We’re not going to provide details about installing the SDK just yet, because there
are other important issues that we should discuss first. However, if you want to
peek ahead, please see section 9.2, Tools Installation.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 8

2.4 Obtaining Other Files
Please note that there may be other files containing sample code and/or demos
available from the website or FTP site. For example, the website features a
number of demo programs (mostly without source code) which are non-essential,
but which may be interesting.

2.4.1 Decrypting Other Files
Please note that all files on the FTP site or website posted on the same date will use
the same decryption password. For example, SDK0209.DES and
DEMO0209.DES share the same password. Therefore, simply apply the
instructions given in section 2.3.2.1 above, using different filenames on the
command-line as appropriate.

If you download a file from the website and do not have the proper decryption
password, please contact developer support via telephone or EMAIL.

2.4.2 Personalized Downloads
Please note that from time to time, the FTP site may have files intended for specific
developers. For example, a developer may send some source code to a developer
support engineer who will make changes and post a revised version for the
developer to download.

Such personalized downloads will always be encrypted with a unique password to
ensure confidentiality, so you should never download a file unless you know the
file is intended for you. If you aren’t the intended recipient, then you will not be
provided with the password, and you will not be able to decrypt these files.

2.4.3 Obtaining Technical Notes
The VM Labs Support FTP Site contains a variety of technical notes that may be
useful and interesting. Please look at the website on a regular basis for updates and
new materials.

2.5 Things to Keep in Mind About Developer
Support

There are a number of things about the whole developer support process that are
important to know and remember. When contacting developer support, please
keep them in mind. This will make the entire developer support process much
smoother for everybody.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 9

2.5.1.1 “We are both under non-disclosure”

Sometimes developers are reluctant to share information or code fragments that are
required to find the solution to a particular problem. This might be because your
project hasn’t been publicly announced, or for many other reasons.

Please always keep in mind that the relationship between VM Labs and a developer
is covered under a mutual non-disclosure agreement. Our support staff is not going
to discuss your confidential information with the press, the public, or even other
people within VM Labs who do not have reason to know about it.

If there’s any doubt about which information is “confidential” and which might be
considered “public”, then just let us know which is which. For example, details
about the inner workings of your code are always going to be “confidential” and
there’s no doubt about that.

On the other hand, just the fact that you’re working on a particular project could be
either “public” or “confidential” depending on a number of factors.

When in doubt, let us know in advance so that we can take appropriate care. That
way, there should be no reason for you to be reluctant to share information about
your project with our developer support staff.

2.5.1.2 “I know it sounds stupid, but please try it anyway?”

Frequently a developer support engineer will make a suggestion that sounds very
simplistic and unlikely to solve the problem. If the suggestion is more than
minimally time consuming, the developer may be reluctant to try it.

It’s amazing how often those “stupid” suggestions lead directly or indirectly to the
solution.

Experience shows that a very high percentage of developer support issues are
based on very simple problems or mistakes that are easy to overlook. Finding the
cause of a problem is often a matter of collecting as much data as possible. Even
“stupid” suggestions will help eliminate possibilities and the results often provide
data that will help determine the real problem.

2.5.1.3 RTFM: Read the fine manual

We’ve all heard “R-T-F-M” in response to a problem. It’s a cliché, but it got to be
one because it’s true so often. A surprising number of times, the answer to your
question is right in front of you, somewhere within the documentation at hand.

We acknowledge that finding a specific piece of information in a sea of
documentation can sometimes be difficult, so please don’t hesitate to contact
developer support whenever you feel it’s necessary. But always keep in mind that

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 10

if the answers are in the documentation, you’ll find them faster yourself than if you
contact developer support.

It’s difficult to commit large amounts of technical documentation entirely to
memory and probably impractical to even try. However, it’s really helpful if you
make an effort to at least scan through all of the documentation so you have a basic
idea of what subjects are covered, and in which section of the docs they are
located. This will help you more quickly locate the information you need when
you need it.

2.5.1.4 “The support guy’s asking me too many questions,
instead of answering mine!”

Sometimes when a developer asks some questions, instead of giving the answer
they wanted, the support engineer asks questions: What they are doing? And why
are they doing it that way? The developer then gets annoyed at being grilled for
details, and often suspects one or more of the following:

• They just don’t want to give me that information. Maybe it’s
“undocumented”.

• They think I’m doing something “illegal” and they want to catch me at it.

• They don’t think I know what I’m doing.

The result is a situation full of distrust and frustration on both sides, which doesn’t
do anybody any good.

In most cases, providing the best answer to the developer’s original question
depends greatly on the context of the situation. Maybe the original question is not
very precise, and more detail is needed in order to distinguish one problem from
another. Perhaps the description is unusual in some fashion, and more detail is
needed in order for things to make sense.

The main goal of a developer support engineer is always to help developers past
their problems. There are two components involved in accomplishing this goal:
first, figuring out the solution to problems that pop up for the first time; second,
giving out solutions to problems that have previously hit other developers.

Whenever a problem comes up for the first time, the developer support engineer
has to try to help solve the problem, but must also prepare for the possibility that
the same problem will eventually happen to someone else. Different people might
describe the same problem in drastically different ways. Without details, it can be
difficult to determine that they are talking about the same basic problem.

That’s why we ask so many questions.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 11

There may be rare occasions when we may suspect the developer is doing
something “illegal” or is trying to access something that is undocumented. Such
occasions are very much in the minority, but they do occur occasionally.

Please keep in mind that we’re not trying to catch a developer doing something
wrong in order to slap them on the wrist or to berate them for not following the
rules. Our goal is to make sure the developer’s software will operate properly and
efficiently, and to avoid compatibility problems with different pieces of hardware.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 2 - 12

This page intentionally left blank.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 3 - 1

3. NUON Development System Revisions

Aside from the issue of which revision of the NUON chip is used, there are
currently two revisions of the NUON Development System in common use. The
unique attributes of each revision are described in separate sections below.

3.1 Revision 4 System
Revision 4 systems are no longer being shipped, but in case you have one, we still
include the information here. These systems are shipped in AT-style PC computer
cases. All of the system ports are accessed through a hole in the back of the case.

Figure 3-1 — NUON Development System Ports (Revision 4)

The “ACE360” ports along the top row are used to connect your NUON to your
host computer system. These ports are part of a daughtercard that is mounted on
the motherboard. This daughtercard contains the Ethernet interface and serial port,
as well as the ACE360 processor that controls these devices.

The controller port at the right end of the top row allows you to connect a
prototype NUON controller.

The ports along the bottom row are used to connect your NUON system to a
television, monitor, and/or stereo system.

The revision 4 system has three backplane expansion slots, but they are normally
unused on a standard system.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 3 - 2

3.2 Revision 5 System
The revision 5 system is shipped in a ATX-style PC computer case. Most of the
system ports are accessed through the hole on the back of the case.

Figure 2 — NUON Development System Ports (Revision 5)

Revision 5 systems use a backplane expansion board for the interface card that
contains the Ethernet interface and serial port. This interface card uses the
PowerPC 860 processor instead of the ACE360 processor used on revision 4
systems.

Please note that the 100Base-T Ethernet port is not yet functional and may not
even be present on all systems. Use the 10Base-T port until you hear otherwise.
Also, some interface cards may not have the second connector for 100Base-T. If
there is only one connector, it will be for 10Base-T.

The ports on the left side are used to connect your NUON system to a television,
monitor, and/or stereo system. The ports along the right side are used to connect
game controllers to your NUON system.

Depending on the specific revision of your system, your controller ports will either
be genuine NUON connectors as found on a regular consumer machine, or they
will be USB connectors. However, in the latter case, it’s just a USB connector, not
a USB port. Do not connect USB peripherals to these connectors.

3.3 Development System Expansion Cards
Please note that while it uses a similar connector and form factor, the expansion
cards used by NUON development systems are not PCI cards and will not work in
any other type of device, nor will a PCI card intended for another system work in
the NUON system.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 4 - 1

4. NUON A/V Connections

The back of your NUON development system contains a variety of connectors. In
this section, we will discuss the connection of the A/V connectors to your TV,
monitor, and/or stereo system.

We’ll only show illustrations for revision 5 development systems. Please refer to
section 1 for details on port locations.

4.1 Connecting NUON to your TV or monitor
The NUON system uses standard RCA cables for audio and composite video
outputs. If your TV or monitor supports it, you may use the S-Video output for
improved video quality. These cables may be obtained at most audio/video
electronics dealers.

The NUON development system does not include RF modulated output for
connection to a television’s antenna leads. Your television or monitor must have
composite video or S-Video inputs, or you must use a separate RF modulator
obtained from your local electronics retailer.

Figure 4-1 — Standard Video & Audio Connections

Warning: Do not connect the SPDIF Digital Audio output on the NUON to an
analog audio input on your television, stereo, or other device. Doing so may result

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 4 - 2

in speaker damage. Connect this output signal only to a coaxial SPDIF digital
audio input.

4.1.1 NTSC & PAL
NUON’s video display system is configured by the system BIOS whenever the
system is powered-up or reset. Currently, the display is always set for standard
NTSC video output with a 60 Hz refresh rate.

The ability to configure the video display for PAL mode with a 50 Hz refresh rate
is not available at the time of this writing, but this may have changed by the time
you read this. Please be alert for updates and if necessary, contact VM Labs
Developer Support for more information.

4.1.2 Building your own video cable
You may wish to build your own cable to connect the NUON Development System
to a monitor without standard composite or S-Video inputs (for example, a SCART
monitor). Here are the pin-outs of the 9-pin Miscellaneous Video Out connector:

Figure 4-2, Miscellaneous Video Out Connector

Pin: Signal:
1 Composite video (used as sync for RGB SCART)
2 Composite sync (TTL levels, for Amiga-type monitors)
3 Blue
4 Green
5 Red
6 Ground
7 +12V
8 +3.3V
9 Ground

4.1.3 Connecting NUON to Your Stereo
If you are connecting your NUON development system to a stereo system, please
note that the SPDIF digital output is used only by DVD movie playback at this
time. In order to hear the sound produced by games, the SDK sample programs,
and so forth, it will be necessary to use the analog audio outputs.

Warning: Do not connect the SPDIF Digital Audio output on the NUON to an
analog audio input on your television, stereo, or other device. Doing so may result

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 4 - 3

in speaker damage. Connect this output signal only to a coaxial SPDIF digital
audio input.

4.1.4 DVD Movie Playback on the Development
System

At this time, the NUON development system now includes the firmware required
to play DVD movie discs. However, because the system is first a development
system, the process is not the same as if it were a standard DVD player.

To play a DVD-Video disc, insert the disc into your NUON dev system and cycle
the power. So long as you don’t have a very old firmware revision installed in
your system, you’ll see a screen containing a red NUON logo and some text.

At this point, if you press “A” on controller 1, the system will begin playing the
disc.

Please note that because a development system does not have a front panel or
remote control like a standard production DVD player, you will have to control
playback using the game controller. We regret that it is not practical for us to
include a reference of which buttons perform which functions because this may
depend on the specific firmware revision involved. Please experiment with
different button combinations and you’ll figure it out.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 4 - 4

This page intentionally left blank.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 5 - 1

5. Connecting the NUON Controller

There are two different methods of connecting a controller to a NUON
development system, depending on the controller itself and the development
system revision. This chapter will cover both methods.

5.1 Connecting A Production NUON Controller
Please note that on some revisions of the NUON development system, USB-style
connectors are used for game controllers. However, please be aware that these are
not USB ports.

Never connect USB peripherals to a NUON development system. Doing so may
damage the peripheral and the development system.

If your development system has USB-style connectors, connect the controller to
the supplied adapter cable, and then plug the other end of the adapter cable into the
USB-style connector. Port 0 is the one on top. Port 1 is the one on the bottom.

If your development system has genuine NUON connectors, simply plug in the
controller directly. Port 0 is the one on the left. Port 1 is on the right.

Figure 5-1 — Connecting A Controller

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 5 - 2

5.2 Controller Prototypes & The Interface Box
Controller prototypes do not have the electronics required to encode the data from
the controller inputs and transmit it to the NUON system. These controllers simply
contain switches and analog joysticks that must be connected to a separate
interface box that will take the data and finish the job.

Figure 5-2 — Connecting A Controller Prototype

The controller interface is a small black plastic box with a DB-25 connector on one
side and a DB-9 connector on the other. It goes between the controller and the
development system.

Both revision 4 systems and revision 5 systems can use controller prototypes
connected to an interface box. Simply connect the DB-25 connector coming from
the controller into the DB-25 port on the interface box. Next, take the DB-9 cable
that was supplied with your development system and connect it between the
NUON Controller Port and the small interface box. That’s all that is needed.

Please note that current revisions of the NUON BIOS no longer include support
for the controller prototypes mentioned here. If you don’t have any production
controllers, please contact your VM Labs account executive immediately.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 5 - 3

5.2.1 Interface Box Notes
Please note that a different interface box is required depending on the chip revision
being used. The development system revision itself doesn’t matter, only the chip
revision. An interface box designed for an Aries system will not function when
connected to an OZ system, and vice versa.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 5 - 4

This page intentionally left blank.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 6 - 1

6. Connecting NUON & Your Host PC

The NUON development system is designed to connect to your host computer via
standard 10Base-T Ethernet running on a standard twisted pair RJ45 cable.
Category 5 or better cable is recommended.

Figure 6-1 — NUON Ethernet Connection For Revision 5 Systems

6.1.1 Connecting as part of an existing network
If your host computer is already part of a network, simply connect a standard
twisted pair RJ45 network cable between the NUON’s Ethernet port and your
network hub.

You may need to obtain a different network hub if your current one does not
support 10Base-T on twisted pair RJ45 cable. If your network uses BNC coaxial
cables, the best solution is to find a small hub that supports both twisted pair RJ45
and BNC. The computer can be connected using the existing cables, but the
NUON must be connected using a twisted pair RJ45 cable.

If your network is running 100Base-T, the best solution is to use a dual-speed hub
which allows both 100Base-T and 10Base-T connections.

Please note that although revision 5 development systems have separate ports for
10Base-T and 100Base-T, the 100Base-T port is not yet functional.

6.1.2 Connecting Directly
If your host computer is not connected to a network, then it may instead be
connected directly to the NUON development system using a special crossover
network cable. This cable should run directly from the NUON’s Ethernet port to a
network adapter card installed in your host computer.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 6 - 2

If your host computer does not have a 10Base-T Ethernet adapter using twisted pair
RJ45 cable, you will need to install one.

Note: Most crossover Ethernet cables are colored bright orange to distinguish
them from standard cables. Making your own cable is not recommended.

6.1.3 NUON Serial Port
The NUON Development System also has a serial port. However, because the
transfer rate of an RS-232 serial port is relatively very slow compared to Ethernet,
it is used only for configuration of the NUON system and other special functions of
the systems debug stub, and not for general communication.

6.2 Communicating With NUON
The TCP/IP network communications protocol is used to communicate with the
NUON development system. Before you can run sample programs or do anything
else with NUON, you must make sure that the TCP/IP configurations for NUON
and your host computer are correct.

6.2.1 Do I have TCP/IP?
If your computer is already connected to a network, and you have the ability to
access the Internet via that network, then you already have TCP/IP installed. You
will probably not need to change anything about your host computer’s network
configuration.

If you access the Internet only via modem, or do not have Internet access at all,
then you may need to enable and/or configure the TCP/IP protocol so that it may
be used with your network adapter to communicate with the NUON development
system.

Please contact your network administrator if you require assistance with TCP/IP
setup.

6.2.2 Network Configuration
NUON requires no special network configuration for your host PC beyond
enabling the TCP/IP protocol.

When configuring network hardware and software, if you do not have a strong
working knowledge of the TCP/IP protocol and network configuration, it is
recommended that you contact your in-house network administrator for assistance.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 6 - 3

6.2.3 NUON’s IP Address
The IP address of the NUON development system is set by default to 192.1.1.xxx,
where xxx is indicated by a sticker on the back of the system.

Please note that the NUON development system currently requires that the host PC
and NUON to be on the same subnet in order to communicate. The subnet is
defined by the subnet mask.

The subnet mask is used to determine which IP addresses can be addressed on the
local node of your network, and which are on other nodes or even on completely
different systems.

With most small networks, the subnet mask value is 255.255.255.0. This means
that an IP address that has the same first three values should be treated as “local”.
If the subnet mask is 255.255.0.0, then only the first two values must be the same.3

For example, if your subnet mask is 255.255.255.0 and your host computer’s IP
address is 203.34.123.54, then your NUON system must be set to 203.34.123.xxx,
where xxx must be a value from 0-255 which is not used any other machine on the
local network.

Accessing non-local IP addresses is typically done through what is known as a
gateway. This is a network server or dedicated hardware device that is responsible
for acting as a dispatcher, receiving packets of data from one subnet and passing
them through to other subnets or the outside world. It may perform special
filtering tasks to limit what sorts of packets may be passed through.4 It may also
perform special translation operations to change IP addresses as needed before
sending them through to the outside world.5

Assigning IP addresses is usually the responsibility of your in-house network
administrator. In order to avoid conflicts with other network devices, always ask
them to assign an IP address for NUON to use.

You probably want to know how you can change the IP address. However, you
must first know how to access the debug stub and setup menus so we’ll discuss that
information first in section 7. Then we’ll come back to the topic of changing the IP
address in section 8.4.

3 Please note that this is an extremely simplified explanation. If you want more detailed

information, you’ll have to look at books on networking or TCP/IP.

4 This is what’s known as a “firewall”.

5 This is known as “Network Address Translation” and it allows an internal network to use a
range of IP addresses without requiring that they be unique with respect to all of the other
networks in the rest of the world.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 6 - 4

This page intentionally left blank.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 7 - 1

7. NUON Boot/BIOS ROM

This section will discuss the NUON boot/BIOS ROM. This is the flash ROM on
your development system’s motherboard that contains the NUON BIOS and
related firmware required for the system to operate.

The information in this section applies to revisions released since October 2000.

7.1 Built-In System Configuration Program
Current revisions of the boot ROM include a configuration program that allows
you to control a variety of important details about the machine’s operation.

To access the configuration program, simply cycle the power or press the RESET
button on your development system. After a few seconds, you should see a screen
with a black background, a big red NUON logo, and white text.

If you press the “Up” direction on your controller’s D-PAD while viewing this
screen, the configuration program will be activated. If nothing happens, check
your controller connection.

If the text on screen indicates that you should press a different button, then you
may be running a new version of the software that was not available at the time of
this writing. In that case, follow the prompts on screen.

Once the configuration program appears on screen, you can use the controller to
change your system settings and perform certain tests. Simply follow the prompts
on screen.

If you do not see the NUON logo screen described above and cannot access the
configuration program, the most likely cause is that you have an older version of
the system firmware installed.

7.2 Boot ROM Versions & Demo Programs
Please note that certain older demo programs for NUON may not function properly
with newer versions of the boot ROM. In most cases, this is because the system
video setup may be done differently than on earlier versions of the boot ROM.

This mainly affects older demos that are provided without source code, not sample
programs which are provided along with source code as part of the SDK.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 7 - 2

7.3 Updating Your Firmware
In the event that it is necessary for you to update your system’s firmware, please
follow the steps described below.6

Try the “EZ Update” steps first. They will work fine in most cases and they will
save you time and effort since it’s not necessary to open your machine.

If you experience problems with the “EZ Update” instructions, then move to the
“Step-By-Step Trouble-Shooting Update” instructions, which include extra steps
designed to avoid or recover from such problems.

7.3.1 EZ Update
1) Open an MSDOS command prompt window.

2) Change to the “VMLABS\BIOS Update” folder of your SDK
installation.

3) Execute the “update.bat” batch file located in that folder.

4) Wait for the “Update Completed” message.

5) Power-cycle your NUON development system to complete the process.

These steps will download the program which reprograms the NUON development
system’s flash ROM, and then the update files themselves. There may be several
files to be downloaded and the process may last a few minutes.

7.3.2 Step-By-Step Trouble-Shooting Update
If you see any error messages during the “EZ Update” instructions, try the
expanded instructions below.

1) Open your NUON development system’s case to get access to the
motherboard.

2) Verify that your system has an EPROM chip in the socket on the corner
near the DVD drive.7 If you cannot locate the socket, or if no chip is
installed, then stop now and contact VM Labs Developer Support.

3) Turn off your development system.

6 This refers to SDK releases since February 15, 2001.

7 This refers to Revision 5.x systems.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 7 - 3

4) Look at your motherboard and locate the jumper that is labeled “FLASH”
on one end and “ROM” on the other end. Change it to “ROM”

5) Turn your development system back on. After a few seconds, it should
show color bars. If not, then stop now and contact VM Labs Developer
Support.

6) Open an MSDOS command prompt window.

7) Change to the “VMLABS\BIOS Update” folder of your SDK
installation.

8) Execute the “update.bat” batch file located in that folder.

9) When you see the prompt to “Press any key to continue . . .” change the
jumper from “ROM” back to “FLASH” with the power still turned on.

10) Press a key on your keyboard. The update process should begin.

11) Wait for the “Update Completed” message.

12) Power-cycle your NUON development system to complete the process.

If you see error messages again, please contact VM Labs Developer Support.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 7 - 4

This page intentionally left blank.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 8 - 1

8. The Debug Stub

The debug stub built into each NUON development system is separate from the
system boot/BIOS ROM. It resides on the debug interface card and has the
following basic functions:

• Allow configuration of Ethernet & TCP/IP settings.

• Manage the transfer of program code, data, and other information through the
Ethernet TCP/IP connection and the serial port connection.

• Provide debugging functions through the serial port and through the Ethernet
TCP/IP connection.

8.1 Debug Interface Card
Each NUON Development System has an interface card that contains the Ethernet
network adapter and a serial port. This interface card also has a microprocessor
that manages all communications using those ports.

• Revision 3 or 4 development systems use an ACE 360 card.

• Revision 5 development systems use a card based on the PowerPC 860.

The interface card also contains a Flash ROM chip that stores the code that runs on
the local processor as well as NUON code used for data transfer and debugging.
The code stored on this Flash ROM is known as the debug stub.

8.2 Updating The Debug Stub
The debug stub is updated from time to time to provide bug fixes or additional
functionality. Because the code is maintained in an EEPROM on the interface
card, it may be downloaded from the host PC without the need to open the machine
and swap a chip.

In the SDK, the VMLABS\STUBS directory contains subdirectories for both the
ACE360 stub and the PPC860 stub. Select the folder that is appropriate for your
system, and make sure you view the README file within for the proper
instructions.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 8 - 2

8.3 Communicating With The Debug Stub
The steps below describe how you can use a simple terminal program to
communicate with the NUON system’s debug stub through the serial port.

These instructions assume you are using the HyperTerminal program that is
included with Windows 95/98/ME, but they should be easily adapted to any other
terminal emulation software.

1) Connect a DB-9 (female) null-modem serial communications cable from
an available COM port on your host PC to the serial port on the back of
your NUON box.

2) Run “HyperTerminal”

3) Create a new HyperTerminal session using the following parameters:

Port = COMx (where x indicates the port you're using)
Baud = 9600
Data bits = 8
Parity = none
Stop bits = 1
Flow control = none

4) If it is powered on, turn off your NUON system for a few seconds, then
turn it back on, or hit the front-panel Reset switch. If you’ve successfully
established a connection, then in HyperTerminal you’ll see a startup
message from NUON that looks something like this:

IP Address 192.1.1.222
Aries Debug Stub 3.95d - Jul 14 1999, 23:13:30
Lightweight debugging on 3
Listener initialized
Enter Ctrl-C to go interactive

The exact text you see will depend on the version of the debug stub that is installed
on your NUON system. However, if you see no text at all, or if the text is garbled,
then you do not have a valid connection. You should check your null modem cable
connections and your HyperTerminal settings.

Once you’ve established a connection, hit <Control-C> on your host PC’s
keyboard to bring up the debug stub main menu. If you do not get this menu,
check that your HyperTerminal settings match those specified in step 3 and then try
again. If nothing works, contact VM Labs for assistance.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 8 - 3

8.3.1 PPC860 Stub Menu
There really isn’t a menu shown on the PPC860 stub serial connection. Instead,
there is a simple command prompt. However, you can enter the command “help”
to display a list of available commands, as follows:

> help

dump dump the packet log
help display help text
quit leave interactive mode
set ipaddr <addr> set the ip address
set ipmask <mask> set the subnet mask
set log info y set info logging on
set log info n set info logging off
set log requests y set request logging on
set log requests n set request logging off
set log rpackets y set recv packet logging on
set log rpackets n set recv packet logging off
set log xpackets y set xmit packet logging on
set log xpackets n set xmit packet logging off
set macaddr <addr> set the mac address
set serve <n> y enable service on mpe <n>
set serve <n> n disable service on mpe <n>
show show parameter values

You will never need to use most of these commands. The commands that you do
need to access are those for network configuration. These will be described in
context in section 8.4.

8.4 Changing The IP Address Via The Stub
In most cases, it will be preferable to configure your system’s IP address using the
boot ROM’s built-in configuration program as described in section 7.1. However,
there may be situations where you want to change the IP address via the stub. For
example, if you needed to change the IP address without affecting a program that’s
already executing on the NUON chip.

8.4.1 Using The Serial Port Menu
Following the steps below performs the IP address configuration on all
development system revisions.

Establish a connection to the debug stub via the serial port connection. This
process is described in section 8.1. Once you’ve established a connection, hit
<Control-C> on your keyboard to enter interactive mode:

Type 'quit' to exit interactive mode

> _

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 8 - 4

The exact text of the prompt depends on the stub version and machine revision. If
you do not get any prompt, check that your HyperTerminal settings match those
specified in step 3 and then try again. If nothing works, contact VM Labs for
assistance.

From this point, please follow the appropriate steps from the table below,
depending on which type of machine you have.

Revision 5 Systems Revision 4 Systems
You can get a list of available functions
by entering “help” and pressing
<Enter>.

Enter “E” followed by <Enter> to
access the EEProm functions menu.

To see the current settings, type “show”
and press <Enter>. This will result in a
display similar to that shown below.

On revision 4 systems, enter “S”
followed by <Enter> to display the
current settings.

At this point, the stub will display several lines of information as shown below (it
may not look exactly like this). The important settings are the IP Address, the IP
Mask, and the MAC Address. It’s a good idea to write down the existing settings
before making changes.

IP address 192.1.1.222
IP mask 255.255.255.0
MAC address 00:a0:c9:69:c9:de
Don't log info
Don't log requests
Don't log recv packets
Don't log xmit packets
Lightweight Debugging
 MPE 0 no
 MPE 1 no
 MPE 2 no
 MPE 3 yes

Revision 5 Systems Revision 4 Systems
Change the IP address by typing “set
ipaddr” followed by the new IP address
in dotted notation. For example:

set ipaddr 209.46.69.224

would change the IP address to
209.46.69.224

Change the IP address by typing “I”
followed by the new IP address in
dotted notation. For example:

I 209.46.69.224

would change the IP address to
209.46.69.224

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 8 - 5

Revision 5 Systems Revision 4 Systems
To change the IP subnet mask
address, type “set ipmask” followed by
the new IP mask address. For
example:

set ipmask 255.255.255.0

would change the IP subnet mask
address to 255.255.255.0.

To change the IP subnet mask
address, type “M” followed by the new
IP mask address. For example:

M 255.255.255.0

would change the IP subnet mask
address to 255.255.255.0.

After making your changes, type
“show” again to verify the new settings.

After making your changes, type “S”
and hit <Enter> to verify the new
settings.

Remember to write the new settings down. You should always use a label on the
back of the machine to indicate the current settings.

Cycle the power to NUON so that the updated settings will be recognized.
Alternately, you can hit the RESET button at the end of the PPC860 interface card.

That’s it! You’ve changed your NUON system’s IP address.

8.5 Changing NUON’s MAC Address
The MAC address is another type of network address. The “MAC” part of the
name stands for “Media Access Control” and it is the low-level address used by
Ethernet to uniquely identify each piece of hardware on a local area network. The
MAC address value consists of a series of six hexadecimal numbers. For example:

00 A0 C9 69 C9 DE

In rare cases, it may be necessary to change the MAC address of your NUON
system to avoid conflicts with other systems on the same network.

In most cases, the default factory setting of the MAC address will work fine.
However, if you experience odd network conflicts between different NUON
systems on the same network, or between a NUON system and another network
device, then changing the MAC address may fix the situation.

Please follow the appropriate steps from the table below, depending on which type
of machine you have.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 8 - 6

Revision 5 Systems Revision 4 Systems
Change the MAC address by typing
“set macaddr” followed by the new
MAC address in hexadecimal notation.
For example:

set macaddr 00 a0 c9 69 c9 de

Change the MAC address by typing
“W” followed by the new MAC address
in hexadecimal notation. For example:

W 00 a0 c9 69 c9 de

After making your changes, type
“show” again to verify the new settings.

After making your changes, type “S”
and hit <Enter> to verify the new
settings.

Remember to write the new settings down. You should always use a label on the
back of the machine to indicate the current settings.

When you've finished, cycle the power to your NUON system so that the updated
settings will be properly recognized.

8.5.1 Selecting A New MAC Address
If you decide to change the MAC address, the question is what to change it to?
Unfortunately, there is no easy way to determine what MAC addresses are already
used by other devices on your network. However, the fact that there are six
separate values means that random selections are likely to work without conflict.
Therefore, it’s probably best to simply change one of the six existing values and
then see if the conflict goes away.

Please note that the usual convention for NUON is that the last digit of your MAC
address should be the same as the last number of your TCP/IP address.

8.6 Your Host PC’s IP Address
Depending on your network configuration, the IP address used by your host PC
may be obtained in different ways.

8.6.1 Using A Static IP Address
The first method is to assign a static IP address. This address is the same each time
the computer connects to the network. This requires that the network administrator
keep track of which IP addresses are in use at all times, in order to ensure that no
single IP address is assigned to more than one machine.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 8 - 7

8.6.2 Using DHCP
The other method is known as DHCP (Dynamic Host Configuration Protocol),
which allows a machine to request an IP address and other network configuration
settings from a server when it starts up. This method requires that a particular
machine on the network act as a DHCP server.

The DHCP server listens to the network for login requests, and responds by
assigning an IP address. It also broadcasts the address of the network gateway,
DNS server, and other network resource information.

NUON does not know how to use DHCP (as of this writing), but there is no
restriction on using it for your host PC.

8.6.2.1 When No DHCP Server Is Available

If a DHCP server is not available to assign an IP address dynamically to your host
PC when it connects to the network, then you must specify a fixed IP address for
your host PC. Otherwise, the TCP/IP services on your PC will not know what
address to use and they will not initialize properly. Then you will not be able to
communicate with your NUON development system.

8.6.3 Using Multiple Network Cards
Please note that if you have multiple network interface cards installed in your host
PC, the TCP/IP protocol is handled separately for each one. You can have a fixed
IP address for one card and a dynamically assigned IP address for the other. They
can even be on completely different subnets.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 8 - 8

This page intentionally left blank.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 9 - 1

9. NUON Development Tools

This section will give a basic overview of the NUON development tools: how to
get them working, what files are involved, etc.

9.1 System Requirements
The system requirements for the development tools are as follows:

• 133Mhz or faster Pentium-based PC

• 10Base-T (RJ45) Ethernet adapter

• Windows 95/98/ME, Windows NT 4.0, or Windows 2000

• 16mb RAM (minimum, 32mb or more recommended)

• 70mb free disk space (the basic amount required for the SDK tools, libraries,
sample code, and demos, not counting your own project’s code and data)

These requirements are subject to change as new revisions of the SDK are made
available.

Please note that the SDK tools may work with lesser configurations, but they are
not recommended.

9.1.1 Which Version Of Windows?
The NUON SDK tools should work on any 32-bit version of Windows since
Windows 95. However, please be aware that there may be subtle differences from
one version to another. Also note that individual software projects for NUON may
be configured to use tools or methods that are specific to a particular version of
Windows.

9.1.1.1 Windows 95

If you’re still using Windows 95, we strongly recommend that you upgrade to
Windows ME or Windows 2000. However, at this time there are no known
problems using any of the NUON SDK tools with Windows 95.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 9 - 2

9.1.1.2 Windows 98

At this time, there are no known problems using any of the NUON SDK tools with
Windows 98.

9.1.1.3 Windows ME

At this time, there are no known problems using any of the NUON SDK tools with
Windows Millennium Edition.

9.1.1.4 Windows NT

At this time, there are no known problems using any of the NUON SDK tools with
Windows NT v3.5 or 4.0.

9.1.1.5 Windows 2000

At this time, the preferred choice of operating system for the NUON SDK is
Windows 2000. There are no known problems using any of the NUON SDK tools
with Windows 2000.

9.2 Tools Installation
Information on obtaining the NUON SDK is provided in section 2.3. We’ll
presume you’ve followed the instructions there and have decrypted the
downloaded file to obtain an archive file named SDK.ZIP.

You should extract the contents of the SDK.ZIP archive to the root directory of
your selected drive. When expanding the SDK archive, make sure you have
selected the option to preserve the archive’s directory hierarchy. This will result in
a folder named VMLABS that will contain everything else.

Note that using the standard DOS-based PKZIP or PKUNZIP tools from a DOS
command shell will not preserve the long filenames used by many of the files
within the archive. A Windows 95/NT compatible ZIP tool that properly
understands long filenames is required to properly extract the contents of the
archive.

If you do not have such a tool already, please visit the DOWNLOAD.COM web
site at http://www.download.com and search for “WINZIP”.

After you have extracted the contents of the SDK archive to your hard disk, most
of the NUON development tools require no additional setup except for setting a
few environment variables, as detailed in section 9.3.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 9 - 3

9.3 NUON SDK Environment Variables
The environment variables listed in this section must be set as indicated in order
for the NUON SDK tools to function properly.

9.3.1 MD_PORT
This must be set to the IP address assigned to the NUON development system. For
example:

set MD_PORT=192.1.1.222

If you have multiple NUON development systems and wish to communicate with
more than one, you may change the contents of the MD_PORT variable to switch
back and forth using the “set” command of the DOS command prompt.

Note that the PUFFIN debugger relies on the presence of the MD_PORT variable
to determine if it should communicate with a development system or use the built-
in NUON processor emulation mode. If the MD_PORT variable is not set, then
PUFFIN will use emulation. (Note that not all versions of PUFFIN support the
emulation mode.)

9.3.2 VMLABS
The VMLABS variable should point at the folder containing the SDK. For
example:

set VMLABS=C:\VMLABS

This variable should specify a single path as shown above.

Throughout this document, we may occasionally refer to this variable as
$VMLABS.

If you experience difficulty compiling or linking when your tools and source code
are on different drives, make sure this variable is set to point at the SDK folder.

9.3.3 PATH
This variable is used to contain a list of directories to search when looking for
executable programs.

The PATH list must include the VMLABS\BIN directory on the drive where you
have installed the SDK. You can easily add this to your existing path using the
following command:

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 9 - 4

PATH=%PATH%;%VMLABS%\bin

This presumes that the VMLABS variable is already defined before you set the
PATH variable.

9.3.3.1 Conflicts With Other Tools

If you have development tools for other platforms installed on your system, check
to see if anything has a filename that matches that of any of the NUON tools. If so,
this is likely to cause problems.

To fix this, you may need to change the order of the directories specified in the
PATH variable, or you may need to remove the directory containing the other
variables from the PATH.

You may wish to create batch files that reset the PATH variable to include or
exclude the VMLABS\BIN directory as needed in order to switch back and forth to
other tools.

9.3.4 DJGPP
The DJGPP variable and the DJGPP.ENV configuration file are commonly used by
MSDOS/Windows versions of the GCC & GNU tools, including versions of the
NUON SDK tools released prior to October 1998. However, they are no longer
required by the current NUON SDK tools/

9.4 MS Windows & Environment Variables

9.4.1 Setting Environment Variables Under
Windows 2000

Under Windows 2000, environment variables are configured via the System
Properties control panel. Either right-click on the My Computer icon and select
“Properties”, or select System from the Control Panel.

Once the System Properties control panel is shown, select the Advanced tab at the
top. Then select the Environment Variables button. This will bring up a new
dialog box where you can edit your environment variable settings.

Alternately, you can also configure environment variables directly on the command
shell’s command line, or in a batch file. However, such configuration is specific to
that particular instance of the command shell.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 9 - 5

9.4.2 Setting Environment Variables Under
Windows 95/98/ME

With Windows 95/98/ME, environment variables are normally configured by your
AUTOEXEC.BAT file. For example, a line such as:

set MD_PORT=192.1.1.222

will set the variable named “MD_PORT” to the value shown.

9.4.3 Things To Remember
Please note that under Windows 95/98/ME, the rules below apply to how
environment variables are used. These may affect your configuration.

• Global environment variables used by Windows are defined in your
AUTOEXEC.BAT file. If you do not have an AUTOEXEC.BAT file, then
Windows will create a minimal set of global environment variables.

• Applications executed from the Windows desktop inherit the global
environment variables. This includes the DOS command shell.

• Programs executed from another application may inherit environment
variables from that application or from Windows, depending on how the
application launches it.

• Within the DOS command shell, environment variables can be changed by
using the “set” command either on the command line or in a batch file.
However, such changes only affect that particular instance of the command
shell and those programs that are executed from it.

• The command shell’s “start” command to run a program is really a message
asking Windows to start the program. Therefore, only the global environment
variables are inherited, not changes made within the shell.

9.5 Windows Cross-Platform Issues
If you are working in an environment where multiple versions of MS Windows are
used, please be aware that there are some subtle differences from one version to
another. These differences may impact your build environment and you need to be
are of them.

The main thing to watch for is that there are some differences in the way the
command shell works under 95/98/ME compared to the Windows NT/2000
command shell.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 9 - 6

Specifically, the options for some commands may be different, or certain
commands on one system may have no direct equivalent on the other system.

We’re not aware of any place in the NUON SDK where this is an issue, but it’s
good to know if a problem does pop up.

9.6 Making the tools work
The main things required to make the development tools work are:

1) Make sure your NUON’s IP address is configured properly. See section
6.2.3 for further information.

2) Download the most recent version of the SDK and decrypt it using the
DES tool as described in section 2.3. This will give you a ZIP archive file
containing the SDK files.

3) Extract the contents of the SDK ZIP file as described in section 2.3.3.

4) Set the environment variables used by the tools as described in section
9.3.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 10 - 1

10. NUON SDK Overview, By Category

This section will break down the programs included in the SDK into separate
categories according to function. This is primarily a reference so that you know
what a particular file is for.

Please note that some files may be listed in multiple places. Some tools may not be
listed because they have been removed from the SDK. This is usually because the
tool in question has been replaced by improved functionality in another tool, or
because it was never really intended to be part of the SDK in the first place.

This section is intended to give you a general idea of what’s in the SDK. Because
the SDK is being updated on a regular basis, the information in this chapter is very
likely to be at least a little different from what is contained in the current SDK
release.

10.1.1 C/C++ Compiler
There are several files that are part of, or related to, the C/C++ compiler:

Program Name Description
MGCC.EXE C/C++ compiler driver. NUON-specific version.
AS.EXE
or
LLAMA.EXE

NUON LLAMA assembler. Assembles the
intermediate assembly language output created by
the C/C++ compiler.

The normal convention of the GCC compiler is to
call the assembler “AS”. However, the NUON
version of GCC has been altered to first look for
“LLAMA”.

CC1.EXE C Compiler executable
CC1PLUS.EXE C++ compiler executable
CPP.EXE C/C++ Preprocessor
LD.EXE
or
VMLD.EXE

Linker used to combine compiled object modules
and libraries into an executable program file.

The normal convention of the GCC compiler is to
call the linker “LD”. However, the NUON version of
GCC has been altered to first look for “VMLD”.

MG++.EXE
or
G++.EXE

C++ compiler driver. Basically similar to MGCC, but
is more C++ specific.

Using MGCC.EXE is recommended for NUON
development.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 10 - 2

10.1.2 Assembler
The assembler is known as Llama.

Program Name Description
LLAMA.EXE NUON assembler

10.1.3 Linker
The linker is VMLD.

Program Name Description
VMLD.EXE NUON Linker

10.1.4 Debugger
The debugger is known as “Puffin” and there are two incarnations:

Program Name Description
PUFFIN2K.EXE Windows version of debugger based on the Tcl/TK

GUI scripting language

This is the primary incarnation of the debugger that
you will be using. It supports C and assembly
source level debugging as well as the XLisp
scripting capabilities

PUFFIN.EXE Console version of debugger. Commands are
issued using the XLisp script language.

10.1.5 Object Module Utilities
The following tools are designed to perform various operations on compiled object
module files or executable program files.

Program Name Description
COFFDUMP.EXE Dumps a list of all symbols within a COFF object

module or executable program file.
VMAR.EXE Library archive utility
VMNM.EXE Library & object module symbol name utility
VMOCOPY.EXE Object module manipulation & conversion utility
VMSTRIP.EXE Symbol strip utility.

10.1.6 Miscellaneous Tools
The following tools are used for a variety of purposes.

Program Name Description
GMAKE.EXE Program builder utility

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 10 - 3

Program Name Description
MLOAD.EXE Aside from the debugger, this program is the

programmer’s main interface to NUON. It allows
you to download code and data, reset the machine,
update the flash ROM, and more.

MTRACE.EXE Walks the program stack to determine the current
call stack (the list of functions that were called to
arrive at the current program counter address).

REDIR.EXE This tool allows the user to individually redirect the
standard character devices stdout and stderr so
that error message, status information, and other
output from the tools may be captured as needed.

10.1.7 C & C++ Include Files
The VMLABS\INCLUDE directory contains C/C++ include files for standard
ANSI C and C++. These files are not NUON-specific.

The JPEG subdirectory contains the C & C++ include files needed by the standard
JPEG library.

The MACHINE subdirectory contains the C & C++ include files which define
basic data types and machine characteristics.

The M3DL subdirectory contains the C & C++ include files needed by the M3DL
graphics library.

The NUON subdirectory contains C/C++ include files which are specific to
NUON.

The OBJC subdirectory may be present in some SDK releases. It contains include
files which are used for Objective C, an object-oriented variation on the basic C
language. The GCC compiler understands Objective C, but this mode of operation
is not supported by VM Labs.

The SYS subdirectory contains a number of C & C++ include files needed by the C
& C++ runtime library.

Other subdirectories may also be present, and will usually contain include files
required by specific libraries.

10.1.8 Library Files
The VMLABS\LIB directory contains linkable library archives containing object
modules from the various programming libraries. It also includes the program
startup code for C and C++ programs.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 10 - 4

The SRC subdirectory contains a variety of other subdirectories that contain much
of the source code for the NUON-specific programming libraries.

10.1.9 Sample Code
The VMLABS\SAMPLE directory contains a number of subdirectories with
source code to a wide variety of sample programs that demonstrate the use of the
NUON system and programming libraries.

10.1.10 Tutorials
The VMLABS\DOCS\TUTORIAL directory contains a number of subdirectories
that contain NUON programming tutorials. Please note that the program code
contained in these directories is intended for teaching purposes and may not
actually compile, assemble, or link properly without additional editing or other
files.

10.1.11 Interface Card & Debug Stubs
The VMLABS\STUBS directory contains the files needed to update the flash
ROM of a development system’s Ethernet interface card.

Please see section 8.1 for more information.

10.1.12 BIOS ROM Images
The VMLABS\BIOS Update folder contains the files required to update your
development system’s FLASH ROM, which contains the system BIOS and
bootstrap code.

Please note that the NUON SDK samples and all current development presumes
that a ROM-based BIOS is available. Older ROM images (before January 2000)
may not include the BIOS.

Aside from the ROM image binary files, this folder also contains the programs
required to perform the update.

10.1.13 Documentation
The VMLABS\DOC directory contains a variety of documentation about NUON
and the various programming libraries. There may be additional subdirectories
dividing the documentation into different categories.

Documentation is provided in one of the following formats:

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 10 - 5

• Adobe Acrobat Portable Document Format (PDF)

• Hyper Text Markup Language (HTML)

• ASCII Text

10.1.14 3D Studio MAX Plug-Ins
The “VMLABS\3D Studio MAX Plug-Ins” directory contains plug-in modules
for the 3D Studio MAX program. These plug-ins allow you to save 3D graphics
information which can be used with the NUON 3D graphics libraries.

The 3D Studio MAX program itself is not included with the NUON SDK. It is a
popular 3D modeling and animation program commonly used for 3D graphics
development.

10.1.15 Photoshop Plug-Ins
The “VMLABS\Photoshop Plug-Ins” directory contains plug-in modules for the
Adobe Photoshop program. These plug-ins allow you to save bitmapped graphics
information using NUON-specific file formats.

The Adobe Photoshop program itself is not included with the NUON SDK. It is a
popular graphics & photo editing program commonly used for bitmapped graphics
editing.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 10 - 6

This page intentionally left blank.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 1

11. NUON SDK Tools Mini Command
Reference

This section will provide a brief description of the main command line options for
the primary SDK tools, and provide other basic information that may be useful.

This is intended to serve primarily as an introduction. Some tools will feature
more command line options and features not mentioned here. For more detailed
information on any given tool, please also refer to whatever additional
documentation is provided separately.

This documentation refers to SDK tools released on or after September 10, 1999.
Previous versions of the tools may function differently in some respects.

11.1 C/C++ Compiler
The program normally used to execute the C/C++ compiler is MGCC. It uses a
command line formatted as follows:

mgcc [options] [source files]

The table below shows some of the more useful command line options for MGCC.
Please note that the commands are case-sensitive.

This information applies to compiler releases of February 15, 2001 or later.

Option Description
-ansi Force strict ANSI-C syntax. Disables GCC features

which are not ANSI-compliant, including the asm and
inline keywords, certain predefined macros, and
recognition of C++ style comments in C code.

-c Perform a compile operation only, do not call the
linker

-C Tells the preprocessor not to discard comments.
Used in conjunction with the “-E” option.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 2

Option Description
-D<macro>[=value] Defines a preprocessor macro on the command line.

This is equivalent to having “#define macro”
statements embedded at the top of the C source
code.

For example, “-DSCRNWIDTH=360” is equivalent to
having “#define SCRNWIDTH 360” at the top of your
source code file.

The value field is optional. If no value is specified,
the macro is assigned a value of “1”. For example,
having “-DNOJOYSTICK would be equivalent to
having either “#define NOJOYSTICK” or “#define
NOJOYSTICK 1”.

-E Stop compiling after the preprocessor stage is
finished. If no output filename is specified using the
“-o” option, the output from the preprocessor is sent
to standard output.

-fomit-frame-pointer This will reduce code size by omitting the stack
frame pointer when possible. However, this does
make the resulting program more difficult to debug.

-g Add source-level debugging information to the output
file.

-I directory Add the specified directory to the paths searched for
included files during the preprocessor stage.

-include file Process file as input immediately before processing
the source file.

-L directory Add the specified directory to the paths searched for
library archive files during the link stage.

-l<libraryname> Specify that a particular library archive should be
included in the link process. For example, “-lmath”
would be used to include “math.a”.

The library specified is expected to be in the current
directory or in the $VMLABS\LIB directory.

Libraries and object modules (including those
resulting from source files) are always searched in
the order specified.

-malignfuncs Specify that all functions should be aligned to begin
on a 64-byte boundary, which is the default cache
line size. This will often result in better cache
performance.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 3

Option Description
-mbl This option specifies that the program should use a

library-based BIOS (LIBBIOS.A) rather than the
system’s built-in ROM BIOS. This also causes a
different startup code module to be used during the
link stage.

This is essentially the opposite of the –mrom option,
and was formerly the default.

-mpe0 Specify that the program will use MPE 0 as the
primary processor. This affects the compiler’s target
memory map. (This was the default with older
compiler versions.)

-mpe3 Specify that the program will use MPE 3 as the
primary processor. This affects the compiler’s target
memory map. (This is the default mode of operation
since February 2001.)

-mreopt Invoke the assembler with -b -O1
-mreopt-more Invoke the assembler with -b -O2
-mrom Specify that the program uses the ROM-based BIOS.

This tells the compiler to use the appropriate startup
code module during the link stage. (This is the
default mode of operation.)

-no-builtin Don’t recognize built-in functions whose names do
not begin with two leading underscores. This
includes abort(), abs(), alloca(), cos(),
exit(), fabs(), ffs(), labs(), memcmp(),
memcpy(), sin(), sqrt(), strcmp(),
strcpy(), and strlen().

GCC normally generates special code to handle
certain built-in functions more efficiently. However,
this can affect debugging, and you cannot change
the behavior of those functions by writing customized
versions.

-o <file> Specify the filename used for output
-O0
-O
-O1
-O2
-O3

Specify that optimization should be used, in varying
degrees. “–O0” is no optimization. “-O” is basic
optimization. “-O3” is extreme optimization.

Note that this does not specify optimization for the
assembler stage. To specify assembler optimization,
see the mreopt and mreopt-more commands.

-pedantic Issue all warnings required by strict ANSI standard
C. Reject forbidden extensions.

-S Compile only, do not call the assembler, do not
delete the assembly language source file that gets
generated

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 4

Option Description
-s Remove all symbol table and relocation information

from output file.
-traditional Support some aspects of older non ANSI-C

compilers. May not work with header files written to
the ANSI-C specification.

-U macro Undefine the specified macro symbol. Equivalent to
“#undef macro”.

This option is always processed after the “-D” option
and before the “-include” option.

-u symbol Pretend that symbol is undefined, forcing linking of
library modules in order to define it.

-v Verbose mode. Output information about command
lines to programs called by MGCC, such as the C
preprocessor, assembler, or linker.

-Wall Turn all warnings on.
-Xlinker option Pass option through to linker stage. Note: if linker

option requires arguments, the “-Xlinker” command
must be given for each. For example, to pass
through “assert definitions” you must write “-Xlinker
assert –Xlinker definitions”

For example:

mgcc -O2 -mreopt-more -o hello.cof hello.c

This would specify extreme optimization for the C compiler, as well as
optimization for the assembler. It specifies that the output filename should be
HELLO.COF. Finally, the input file HELLO.C is specified. This will compile the
HELLO.C file, link it with the standard libraries, and produce the HELLO.COF
output file.

11.1.1 Paths
The compiler expects to find executables within a directory specified by the PATH
environment variable. Other files are located relative to the VMLABS
environment variable.

The compiler expects include files to be located in the $VMLABS\INCLUDE
directory, or in the current directory, or the directory specified using the “-I”
option.

The compiler expects runtime startup code and linkable libraries to be located
within the $VMLABS\LIB directory, or in the current directory.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 5

11.1.2 NUON C/C++ Compiler Notes
This section was last updated on February 5, 2001.

• C++ code compiled with compiler releases dated before February 2001
should be recompiled.

• Since the Feb. 2001 release, the compiler is now more ANSI compliant
and also stricter about enforcement. Some things which generated
warnings with the previous versions will now generate errors.

• As of the Feb. 2001 compiler release, the compiler now combines shifts,
additions, and logical operations (AND, OR, XOR, etc.) into one
instruction where possible.

• The compiler no longer always puts function addresses into a register. It
now sometimes generates a direct reference (i.e. “jsr foo”) rather than an
indirect reference (i.e. “ jsr (r1) ”).

• In many cases, the best code generation (as regards execution speed) may
be obtained by using compiler options of:

 -O3 –mreopt-more –fomit-frame-pointer

rather than simply specifying “-Os”. You may wish to experiment.

• The –mrom and –mpe3 options are now the default mode of operation
and no longer need be used on the command line. They are still
recognized, but this may change in future releases of the compiler.

• The –mbl and –mpe0 options have been added. These cause the compiler
to behave as it did before the –mrom and –mpe3 options were made the
default.

11.1.2.1 Command Line Options

Please note the following information regarding compiler options that may have
changed from one version of the compiler to another.

• As of the February 2001 compiler release, the options –mrom and –mpe3
are now the default mode of operation. Please note that these options will
most likely disappear from a future compiler version.

• Since –mpe3 is now the default, a new –mpe0 option has been added.
This tells the compiler that the code is intended to run on MPE 0 rather
than MPE 3.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 6

11.1.2.2 Function Calling Conventions

Please Note: The compiler conventions are subject to change as the compiler is
optimized for the NUON system. When in doubt about the behavior, you should
examine the compiler output, or contact VM Labs Developer Support.

Generally, the first ten words of parameters (counting from the left) are passed in
registers r0 through r9.

Any excess parameters are passed on the stack, with scalar alignment.

Parameters with short or char type will be promoted to int (or unsigned int) before
the call.

A parameter will be placed on the stack:

• If it is an unnamed parameter to a <stdarg.h> function, or

• If it is the last named parameter to a <stdarg.h> function, or

• If the type has variable size, or

• If the type is marked as addressable (it is required to be constructed into the
stack), or

• If the padding and mode of the type is such that a copy into a register would
put it into the wrong part of the register, or

• If it is too large to fit in the remaining parameter registers. In this case,
subsequent parameters will still be candidates to be passed in registers.

A value in a register is implicitly padded at the most significant end. On a big-
endian machine, that is the lower end in memory. So a value padded in memory at
the upper end can't go in a register.

Once a parameter has been forced onto the stack, all the remaining parameters will
go there too. (Except as noted)

Return values are in r0. Five to eight byte return values are in r0 and r1. Bigger
return values are in memory, with the address in r0.

The called function is responsible for preserving r12 – r28, r30, r31, sp, and
acshift.

The rc0 & rc1 registers are not preserved by a function.

Functions are not responsible for preserving r0 - r11.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 7

11.1.2.3 Obsolete NUON-Specific Options

• The -minterrupt option is no longer supported.

• The -mno-prologue option is no longer supported.

• The -mpack option is no longer supported

• The –moz and -maries options are no longer supported. Aries-only code
generation is now the only mode of operation.

• The –mrom and –mpe3 options are no longer required to specify code that
will execute on MPE 3 on a ROM-based system, as this is now the default.
These options will be removed from a future compiler release. To restore the
old behavior, use the –mbl and mpe0 options.

• The -mfastcalls option may be recognized, but currently has no effect.

11.1.2.4 Other Conventions

• The compiler generates code that uses r31 as its stack pointer. It expects
acshift to be zero. These get set by the code in the C runtime startup file.

• The r31 register must be vector (16 byte) aligned at all times.

By default, type char is signed.

11.1.3 Additional Documentation
The C/C++ compiler in the NUON SDK is based on the GNU GCC compiler from
the Free Software Foundation.

Additional documentation on the GCC compiler from the Free Software
Foundation is available in a separate document. This document discusses only the
aspects of the compiler that are not NUON-specific.

11.2 Llama Assembler
The Llama assembler was created by VM Labs to meet the specific requirements of
the NUON processor. It uses a command line formatted as follows:

llama [options] [source file]

The table below shows some of the more useful command line options for the
Llama assembler. Please note that the commands are case-sensitive.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 8

Option Description
-? Help. Display command line options.
-b Assume condition codes need not be preserved

across branches
-B linkbase Set base address for linking (Valid for MPO output

only)
-c# Add padding for executing from cache; # is the

length of cache lines in bytes.

Using -c alone is the same as -c32.

-Dsymbol[=val] Define a symbol and optionally assign it a value.
Equivalent to:

Symbol = value

at the top of your assembly source code file.

-e errfile Output XLisp compatible error records to errfile
-fasm [,bin]
[,expand-syms]
[,expand-includes]
[,expand-all]:

Create assembly language output; options available:

bin: annotate output with hex representation of
instructions

expand-syms: expand symbols to their ultimate
definitions

expand-includes: expand contents of .include
directives

expand-all: expand symbols and interpret module
definitions

-fbinary: Output raw binary data
-fcoff: Output COFF object file
-fFMT Select format of output file
-flist: Same as -fasm,bin,expand-includes
-fm68k: Same as -fveri,width=32,segheader,prefix=' .dc.l

0x'
-fmpo: Output .mpo file for debugger / NUON emulator
-fsrec: Output Motorola S-Records

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 9

Option Description
-fveri
[,width=nn]
[,segheader]
[,absaddr]
[,prefix =’string’]
[,rom]:

Create Verilog load file; options available are:

width=nn: set width of output file in bits (default 128)

segheader: output 2 long word header for each
segment: the segment origin and segment length in
bytes

absaddr: output absolute addresses in the Verilog
file; otherwise the top bits of the address will be
masked off and it will be divided by the memory
width in bytes

prefix=’string':
causes the given string to be printed at the beginning
of each line, instead of a tab. Must be the last option
given.

rom: same as `width=8,segheader,absaddr'

-g Include GDB debugging information
-g-old Include old-style (obsolete) debugging information
-i incfile Process contents of file, but do not include it in

assembly output
-I incpath Add incpath to the search path for include files
-jextern Default is –jlocal, unless -c was given
-jlocal Assume jumps/jsrs are in local RAM
-M Generate MAKEFILE dependency list (only, causes

assembly to be disabled.)
-nolines Remove all line number info methods
-nolisp Assume jumps/jsrs are in external (non-local) RAM

remove all before and after methods
-o outfile Set output file name
-O# Optimization level:

0 = no optimization
1 = fast (but not very good) optimization
n>1 = good optimization with n-1 levels of lookahead
(potentially unbelievably slow)

Default is -O0

-Osize Optimize for space rather than time
-r# Assembly language revision number. Default is: 20
-v Verbose flag: print interesting statistics about the

program and the file being assembled.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 10

There are a few additional command line options in Llama, but they are used for
debugging the assembler itself and are not required for application development.

11.2.1 Paths
Llama expects include files to be located in the $VMLABS\INCLUDE directory,
or in the current directory, or the directory specified using the “-I” option.

11.2.2 Additional Documentation
Additional documentation regarding the Llama assembler is available in two
documents:

• Llama User’s Manual — This document is available in Adobe Acrobat
format.

• Optimizing Your Llama — This is an HTML-based tutorial that demonstrates
how to optimize NUON assembly language.

11.3 Linker
The linker from the NUON SDK was created by VM Labs to meet the specific
requirements of the NUON processor. It uses a command line formatted as
follows:

vmld [options] [source files] [library files]

The table below shows some of the more useful command line options for the
linker. Please note that the commands are case-sensitive.

Option Description
-? Help. Display command line options
-b file Link in the specified file as raw binary information.
-B value Use alternate base memory location. Default base is

0x80000000.
-e symbol Define an entry point. Required in order to create an

executable program file.
-i
 or
-r

Incremental link. Makes the linker produce a
relocatable output file that can be used as input to
another link.

-Ldirectory Add the specified directory to the path list searched
for library files. Normally, the path list is the current
directory and $VMLABS\LIB.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 11

Option Description
-lname Include the library archive specified by name in the

link.

The prefix of “lib” and a filename extension of “.a” is
automatically added to name. For example, “-lmath”
specifies that the library archive LIBMATH.A should
be included in the link.

-n Generate an output file even if non-fatal errors occur.
-o name Specify that name should be used for the output file.

The default output filename is LD.OUT.
-T name[, name2…]
=value[+offset][:limit]

Specify the load address of value for the section with
the specified name. Multiple segment names may
be provided, separated by commas.

An additional offset may be provided. This value will
be added to value.

The limit value can optionally specify a maximum
size for the section(s) involved. If the combined size
is larger than the specified value, the linker will show
a warning.

By default, the runtime address of the specified
section(s) will be changed as well as the load
address. See the –R option for more specific control
over the runtime address.

-V Print version of linker
-R name[, name2…]
=value[+offset][:limit]

Assign a specific runtime address of value for the
section with the specified name. Multiple segment
names may be provided, separated by commas.

An additional offset may be provided. This value will
be added to value.

The limit value can optionally specify a maximum
size for the section(s) involved. If the combined size
is larger than the specified value, the linker will show
a warning.

11.3.1 Paths
The linker expects object modules and library files to be located in the current
directory, or in the $VMLABS\INCLUDE directory, or the directory specified
using the “-L” option.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 12

11.4 GMAKE Utility
The GMAKE utility uses a command line formatted as follows:

gmake [options] [target(s)]

The table below shows some of the more useful command line options for the
GMAKE utility. Please note that the commands are case-sensitive.

Option Description
-C directory or
--directory = directory

Change to the specified directory before
doing anything

-d or
-debug

Debug mode. Print out MAKEFILE
debugging information. Prints commands
being executed, and lots of other stuff.

-e or
--environment-overrides

System environment variables override
variables with same name which are defined
by GMAKE and within MAKEFILE. (Default is
vice-versa.)

-f file or
--file=file or
--makefile=file

Specify that file is the makefile to be
processed. If this option is not used, then
GMAKE looks for a file named MAKEFILE in
the current directory.

-h or
-help

Print out command line options

-I DIRECTORY or
--include-dir=DIRECTORY

Search DIRECTORY for included makefiles.

-I or
--ignore-errors

Ignore errors. Continue with MAKE process
even when commands return error.

-j num or
-jobs num

Allow a maximum of num jobs at once.
Default is unlimited.

-k or
--keep-going

Continue with MAKE process even if some
targets cannot be made.

-l load or
--load-average load

Specify maximum load allowed.

-n or
--just-print or
--dry-run or
--recon

Print command lines, but do not execute
commands.

--no-print-directory Turn off “-w” family of options, even if turned
on implicitly.

-o file or
--old-file=file or
--assume-old=file

Assume that file is very, very old, and do not
remake it.

-p or
--print-data-base

Print GMAKE’s internal predefined rules
database which specify how to build target
files from source files.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 13

Option Description
-q or
--question

Do not build target, simply return exit code
that specifies if target is up to date or not.

-r or
--no-builtin-rules

Disable GMAKE’s internal predefined rules
which specify how to build target files from
source files.

-s or
--silent or
--quiet

Do not echo commands as they are
executed.

-S or
--no-keep-going or
--stop

Cancel “-k” family of options. Stop when
target cannot be built.

-t or
--touch

Touch targets (update time/date stamp)
instead of building them.

-v or
--version

Display GMAKE’s internal version number

-w or
--print-directory

Print the current directory

-W file or
--what-if=file or
--new-file=file or
--assume-new=file

Consider file to always be new (always build
target)

--warn-undefined-variables Warn when undefined variables are
referenced.

11.4.1 Additional Documentation
The GMAKE utility in the NUON SDK is the GNU MAKE utility from the Free
Software Foundation.

Additional documentation on the GNU MAKE utility, not specific to NUON, is
available separately. There is an MS Windows HELP file and also a Adobe
Acrobat PDF file contained in the SDK’s VMLABS\DOC folder.

11.5 Puffin Debugger
There are currently two flavors of the Puffin debugger for NUON.

The first is a console-based application named PUFFIN. This version is a 32-bit
application, but is strictly console-based.

The PUFFIN2K version uses a graphic user interface and includes such
enhancements such as assembly and C/C++ source level debugging. Please note
that this was originally named PUFFINTK.

At one time, there was a third incarnation which used a simple MS Windows
interface, PUFFINW, but this version is no longer supported.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 14

11.5.1 Puffin & Tcl/TK
The PUFFIN2K version of the debugger uses the Tcl/TK scripting language and
graphics tool kit, which must be installed separately from the NUON SDK.

The Tcl/TK package is created and distributed by Scriptics. The installation files
can be downloaded from the VM Labs FTP site, or from the Scriptics web site:

 http://www.scriptics.com

11.5.2 NUON Processor Emulation
Some versions of Puffin include a built-in MPE emulator that may be used for
limited debugging if hardware is not available.

Puffin relies on the presence of the MD_PORT variable to determine if it should
communicate with a development system or use the built-in machine emulation
mode. If the MD_PORT variable is not set, then Puffin will use attempt to use
emulation.

Please note that the built-in emulation only handles the MPE itself, not the entire
machine. Any code that requires the presence of external hardware will not
function properly.

11.5.3 Additional Documentation
The existing documentation on the PUFFIN debugger is available in the form of
three separate documents:

• X-Lisp: An Object Oriented Lisp

• X-Lisp Tutorial: An Introduction For C Programmers.

• Puffin API

Additional documentation regarding the updated version of the PUFFIN debugger
will be available separately.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 15

11.6 MLOAD Utility
The MLOAD tool is used for general purpose communication and data transfer
between your host PC and your NUON development system. It includes
commands for downloading program files or binary files, as well as performing
register dumps and more.

MLOAD takes a command line of the form:

mload [options] [file] [more options] [file]

MLOAD essentially processes the command line step by step from left to right.
Each option either issues a command or sets the state for commands to follow. For
example:

mload –p3 –n game.cof -r -m

This is a common combination of options for MLOAD. It processes the
commands “-p3” and “-n”, then downloads the COFF file “game.cof”. Then it
continues to process the remainder of the commands on the command line.

The MLOAD program assumes that any filename specified by itself on the
command line will be an appropriate NUON executable program file. If
“game.cof” had been “image.jpg” instead, MLOAD would not have known what
to do with the file and an error message would be shown.

11.6.1 MLOAD Command Options
The table below shows some of the more useful command line options for the
MLOAD utility.

Option Description
-? Help. Display command line options.
-! Reset the NUON chip
-~ from : to : count Update host flash memory f(rom), t(o), c(ount)

Note that this command affects’ the host machine’s
flash memory, not the ACE360 board.

-a file : address Load the specified file into host memory at the
specified address. Hexadecimal addresses should
be specified by a prefix of “0x”

-b file : address Load the specified file into host memory at the
specified address as a straight binary transfer. The
file may contain anything. Hexadecimal addresses
should be specified by a prefix of “0x”

-c Compare contents of memory against file

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 16

Option Description
-dd address : num
[options]

Dumps memory starting from the specified address,
via the data cache. Hexadecimal addresses should
be specified by a prefix of “0x”

You may also specify several options:

m = Monitor progress when redirecting output to a
file.

i = Dump in binary image mode

a = Dump in ASCII text mode

w# = Specify number of scalars to write per line.

-df address : num :
file

Dumps memory starting from the specified address
and saves it to the specified file. Hexadecimal
addresses should be specified by a prefix of “0x”

-di address : num
[options]

Dumps memory starting from the specified address,
via the instruction cache. Hexadecimal addresses
should be specified by a prefix of “0x”

You may also specify several options:

m = Monitor progress when redirecting output to a
file.

i = Dump in binary image mode

a = Dump in ASCII text mode

w# = Specify number of scalars to write per line.
-dm address : num
[options]

Dumps memory starting from the specified address.
May not match contents of cache. Hexadecimal
addresses should be specified by a prefix of “0x”

You may also specify several options:

m = Monitor progress when redirecting output to a
file.

i = Dump in binary image mode

a = Dump in ASCII text mode

w# = Specify number of scalars to write per line.
-dr Dump registers for the currently selected MPE
-ds address : num Disassembles num scalars of memory starting at

address. Hexadecimal addresses should be
specified by a prefix of “0x”

-f Use the fast loader for the next file (default)
-fs After everything else has been done, start up the file

system server mode of the file server. See chapter
14 for more information on the file server.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 17

Option Description
-fsv Same as the “-fs” option, except displays verbose

tracking information about each file server packet.
-h Stop the processor
-help
or
-?

Display list of available command line options

-ip ipaddr Specify that a particular TCP/IP address should be
used for subsequent commands.

-m Monitor mpe exceptions after loading
-me file After everything else has been done, start up the

media server mode of the file server, using file as the
specified data file. See chapter 14 for more
information on the file server.

-mev file Same as the “-me” option, except displays verbose
tracking information about each file server packet.

-ms blocksize Specify the block size for transfers from the media
server

-msv blocksize Same as the “-ms” option, except displays verbose
information.

-n Specify to MLOAD that a ROM-resident BIOS is
already running so that it can take the appropriate
actions when downloading a program.

-p mpe Select the processor specified by mpe (0-3).
-r Start processor running
-s Use the slow loader for the next file
-t seconds Request that MLOAD should profile program

execution for the specified number of seconds. After
the time has elapsed, a report will be printed.

Should be used with the –y option to load program
symbols.

-u file Transfer an ACE360 or PPC860 Flash ROM memory
update file. Note: This command is supported only
by stub revisions dated April 6, 1998 or later.

-v print the debug stub version number
-w Wait one second
-wm address :
values

Write the scalar values represented by values into
memory at the specified address. Hexadecimal
addresses should be specified by a prefix of “0x”.

-wd address :
values

Same as the –wm option, except goes through the
data cache.

-y programfile Load program symbols from the specified COFF file.
Used in conjunction with the –p option for profiling.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 18

For example:

mload -p0 foo.mpo -r -p1 bar.mpo -r -m

This will load FOO.MPO into the NUON’s mpe 0 processor and start it running. It
will also load BAR.MPO into the NUON’s mpe 1 processor and start it running,
then it will monitor processor exceptions until both of those processors halt.

11.6.2 Using MLOAD For Debugging
The MLOAD tool has many features which can be used for debugging certain
types of problems.

11.6.2.1 Monitor Processor Exceptions Option

The "-m" option tells MLOAD to monitor the NUON system for processor
exceptions, and if one is detected, to print out a detailed register dump that
describes the processor state at the time the error occurred. This gives you output
that looks like this:

Serving files and monitoring exceptions (type 'q' to exit)...
MPE 3 halted: excepsrc=00000100
 mpectl: 02008000, rz: 80010812, sp: 20100ff0
 pcexec: 8001080a, pcroute: 00000000, pcfetch: 00000002
 excepsrc: 00000100, excephalten: ffffffff, cc: 00000021
 intsrc: a20a03f0, intctl: 00000000
 inten1: a0000008, intvec1: 807690a0, rzi1: 80010000
 inten2sel: 00000004, intvec2: 807671a0, rzi2: 8076f13a
 mdmactl: 00000020, mdmaptr: 20500f20
 odmactl: 00000020, odmaptr: 00500f30
 commctl: 80452048, comminfo: 00000000
 commxmit: 80000200 03110880 00000000 00000000
 commrecv: 02000001 00000000 4a6f686e 204d6174
 r0: 00452048 r1: 20500510 r2: 80028078 r3: 00000000
 r4: 00000048 r5: 00000000 r6: ffffffff r7: 80000874
 r8: 800013c0 r9: 800013c0 r10: 00000000 r11: ffffffff
 r12: 40426c50 r13: f9ced8a2 r14: 40398f7f r15: 0a1f1efc
 r16: 00452048 r17: 00000000 r18: 00000000 r19: 00000000
 r20: 4005a14d r21: 8931a901 r22: 80000298 r23: 00000000
 r24: 408591d3 r25: 0000007e r26: 00000ba4 r27: 0000007e
 r28: 00000003 r29: 80000178 r30: 8075fff0 r31: 8075ff80

Figure 11-1 — MLOAD Register Dump

This is very raw information, but in many cases, it contains most of what you need
to figure out what went wrong.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 19

11.6.2.2 Register Dump Option

Another important MLOAD option is the register dump command. There are two
variations.

The "-dr" variation will provide a complete dump of all of the processor's registers
as shown above, but may not be completely transparent to any program that is
currently running. It’s normally best to use “-dr” only when the program has
crashed or locked-up.

The "-drq" variation provides only the registers shown in boldface in Figure 11-1,
but is more transparent to any program that is currently running.

Remember that in order to address an MPE other than 0, you must first specify
which one you want using the "-pnum" option.

11.6.2.3 Deciphering The Register Dump

When you're attempting to find out the cause of a crash bug, the important things to
look at first are the value of the excepsrc, pcexec, pcroute, and pcfetch registers.

The excepsrc value indicates what processor exception(s) occurred. It's important
to note that more than one may have occurred simultaneously. For example, a
value of 0x180 means that there were two different errors. Bit 7 indicates a data
read/write address error. That means that a bad address was used for a load or store
instruction. Bit 8 indicates that there was an address error on an instruction fetch.

For other bits, see the description of the excepsrc register in your Programmer's
Guide in the section labeled MPE Register Set Reference.

The pcexec register indicates the address of the instruction that was being
processed when the error occurred. This should contain a valid address located
somewhere in SYSRAM, SDRAM, or internal MPE memory. In most cases, if
pcexec contains an invalid address, the reason is that the MPE had been idle and
was told to start executing at an invalid address.

Sometimes if pcexec is pointing to a position immediately following an rts
instruction, that is an indication that the stack or the stack pointer was corrupted in
such a way that the return address pulled off the stack was invalid.

The pcfetch and pcroute registers indicate the addresses of the next instruction
packets that are going to be read and executed. These should contain valid
addresses in SYSRAM, SDRAM, or internal MPE memory. Normally, they
should either contain address that immediately follow the value in the pcexec
register, or else they should indicate the address following a branch operation,
subroutine call, jump instruction, return from subroutine, or return from interrupt.
If either of these values is not a valid address, that would normally indicate that
either a return address on the stack has been corrupted, the stack pointer has been

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 20

corrupted and no longer points to the return address, or that a bad pointer address
in a register is being used as the target for a jump or jsr call.

11.6.2.4 Disassembly From Memory

The MLOAD tool can also disassemble blocks of memory. The syntax of this
command is:

MLOAD -p3 -ds <startaddress>:<size>

The startaddress parameter is always provided in hexadecimal, but no leading "$"
or "0x" is required. The size parameter is provided in decimal. So for example, the
following command would disassemble 20 bytes starting from address
0x80010000:

MLOAD -p3 -ds 80010000:20

The main disadvantage of this disassembly is that it does not provide symbols.
However, you can manually match addresses against a list of symbols obtained
using another tool such as vmnm or coffdump.

You can tell MLOAD to load symbols from the COFF file for the current program,
provided you actually have the file and that it contains symbols. This is done by
adding "-y program.cof" to your command line, where program.cof is the name of
the file. When you do this, the disassembly will use those symbols where
applicable.

11.6.2.5 Memory Dump

Another useful feature is the ability to dump a block of memory using MLOAD.
There are several variations on this command. They are:

Basic Memory Dump: MLOAD -p3 -dm <address>:<size>

I-cached Memory Dump: MLOAD -p3 -di <address>:<size>

D-cached Memory Dump: MLOAD -p3 -dd <address>:<size>

Memory Dump To File: MLOAD -p3 -df <address>:<size>:<file>

The address parameter specifies the starting address in hexadecimal. No leading
"$" or "0x" is required. The size parameter indicates the number of scalars (4 byte
blocks) to be displayed. For the last variation, the file parameter indicates the
filename that will be created.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 21

11.6.2.6 Other Useful Programs

Other programs which are useful in combination with MLOAD for debugging are
VMDISASM, MTRACE, VMNM, and COFFDUMP. Please see the individual
sections in this chapter on these programs for further information.

11.7 MTRACE Utility
The MTRACE utility is used to execute a call stack trace. This is normally used
when a program has frozen or crashed to determine the sequence of program
functions that preceded the problem.

Option Description
-b Specify that MTRACE should display a stack trace of

the background task of the Presentation Engine.
-f Specify that MTRACE should display a stack trace of

the foreground task of the Presentation Engine.
-p mpe Specify the processor that owns the stack that you

want to trace. In most cases, this will be MPE 3.
-a address Specify the starting address for the trace.

For example:

mload -p0 foo.mpo -r -p1 bar.mpo -r -m

11.7.1 Presentation Engine Tasks
The Presentation Engine is the kernel that controls the system when the NUON’s
DVD player firmware is activated. It provides a limited multi-tasking system that
has a foreground task and a background task. The “-b” and “-f” options are used to
specify which task should be traced. These options are only applicable when an
application is using the Presentation Engine.

11.7.2 Output
Each entry in the stack trace is of the form:

Label + offset "fileName", line n

The label shown will be the closest label that precedes the actual address. The
offset from that address will be shown as a hexadecimal number. For example:

_main+0000002c "main.c", line 12

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 22

This says that the program counter value that was found on the stack is pointing to
an instruction that is 0x0000002C bytes past the address specified by the _main
label, and that this was at line 12 of the “main.c” source code file.

The symbols and line number information are taken from the COFF file specified
on the command line. It is often useful to try several different COFF files if the
program makes use of several separately loaded files.

11.8 VMAR Utility
The VMAR utility allows you to create and modify library archive files. An
archive is a single file that contains a group of smaller files, usually object modules
containing compiled code and data that will be accessed by the linker.

A library archive created by VMAR is intended to make life easier for the
programmer and the linker. The linker is designed to search an archive file,
determine what pieces of code and data are contained in each individual module,
and then extract only those modules that are required to successfully link a
program.

In order to allow more efficient searching by the linker, the VMAR program can
create an index of all the symbols contained in the individual object modules
within the archive. Once created, this index is automatically updated when object
modules are added or deleted.

Other types of files may also be stored in VMAR archives, but unless they are
intended to be used by the linker, this may not be the best choice, as no
compression is done by VMAR.

The format of the VMAR command line is:

vmar [options][modifiers] ARCHIVE [member…]

The command options and modifiers are described in the tables below. The archive
parameter indicates the filename of the archive to be used or created. The member
parameter contains a single module name, or a list of module names.

Please note that all command line options and modifiers are case-sensitive, and
only one command option may be specified per command line. Note that the
leading “-” before a command option is accepted, but not required.

Option Description
d Delete the object module member from the archive. Multiple

members may be specified.

Examples: vmar –d libmath.a cosine.o
 vmar –dv libmath.a cosine.o sine.o

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 23

Option Description
m Moves the module(s) specified by member to the end of the

archive.

If certain symbols are defined in more than one module within
a library, the order of those modules within the archive can
make a difference in how programs are linked.

Using the ‘a’, ‘b’, or ‘i’ modifiers with the “m” option will allow
you to move the module to a specific location rather than the
end of the archive.

The example below would operate on the LIBMATH.A library,
and move the module named fabs.o to the position following
the sine.o module:

Example: vmar -ma sine.o libmath.a fabs.o

p Prints the specified modules to standard output. This would
be used for text files such as source code which may be
contained in an archive. This command does not produce
readable output for a compiled object module.

Example: vmar p sine.c libmath.a

q Quick Append. Add the specified module to the end of the
archive, without checking if there is another module of the
same name already.

The ‘a’, ‘b’, or ‘i’ modifiers do not affect this operation.

Example: vmar q libmath.a sine.o

R Insert the specified module into the archive, deleting any
existing module with the same name.

By default, modules are added to the end of the archive, but
using the ‘a’, ‘b’, or ‘i’ modifiers will allow you to move the
module to a specific location.

Both examples below would operate on the LIBMATH.A
library and add a module named sine.o. The first example
would add it to the end of the library. The second example
would add it to the library immediately before the arctan.o
module:

Example: vmar r libmath.a sine.o
 vmar ri arctan.o libmath.a sine.o

S Create or update the library’s object module index. Also
available as a modifier which can be specified along with
another command.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 24

Option Description
T Display a table listing of the modules within the archive.

The ‘v’ modifier will cause the permissions flag, timestamp,
owner, group, and size information to be printed as well.

Example: vmar q libmath.a sine.o

X Extract the specified module from the library to an external
file. If no module is specified, all modules within the library
are extracted.

If an external file with that name already exists, it is
overwritten. The archive contents are not changed.

Example: vmar x libmath.a sine.o

Modifier Description
a relpos Specify that the operation should happen at the position within

the archive immediately after the specified relpos module.
This modifier can be used with the “r” and “m’ command
options.

Example: vmar ra arctan.o libmath.a sine.o

b relpos

or

i relpos

Specify that the operation should happen at the position within
the archive immediately before the specified relpos module.
This modifier can be used with the “r” and “m’ command
options.

Example: vmar rb arctan.o libmath.a sine.o
 vmar ri arctan.o libmath.a sine.o

c Disable warning when it’s necessary to create the archive in
order to make an update.

Normally, if the archive does not exist, it is created when you
attempt to add a module using the “r” command option, but a
warning is issued. Using this modifier will disable the warning.

i Specify that the operation should happen at the position within
the archive immediately before the specified RELPOS
module. This modifier can be used with the “r” and “m’
command options.

Example: ar rb arctan.o libmath.a sine.o

o Preserve the original dates of modules when extracting them.
Used with the “x” command option.

s Create or update the library’s object module index.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 25

Modifier Description
u Conditionally add the specified files to the archive only if the

timestamp is newer than the version of the file already in the
archive.

v Turns verbose mode on. More information gets printed about
whatever command is being executed.

V When used with any command option, causes the version of
VMAR to be printed, instead of executing the command.

VMAR also has a mode that can be driven by either interactive commands or a
script file. More details about this mode are listed below. The command line
format for this mode is:

vmar –M [<script]

Note that the script file is specified using standard input redirection. During
interactive use, VMAR prompts for input (the prompt is “AR >”), and continues
executing even after errors. If you redirect standard input to a script file, no
prompts are issued, and VMAR abandons execution (with a non-zero exit code) on
any error.

The command language is not designed to be equivalent to the command-line
options; in fact, it provides somewhat less control over archives. The purpose of
the command language is to ease the transition for developers who already have
scripts written for the MRI “librarian” program.

The command language syntax works according to the following rules:

• Commands are recognized in upper or lower case. For example, LIST is
the same as list.

• Only one command per line, located at the beginning of the line.

• Empty lines are ignored.

• Comments begin with “*” or “;”, everything afterwards on that line is
ignored.

• A list of file names or module names may be separated by either spaces or
commas.

• The “+” character is used to continue a command on the following line.

A basic reference to the available command is provided below. Note that most
commands operate on the current library, which is the one last specified using
either the OPEN or the CREATE command.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 26

Command Description
addlib library Reads the archive specified by library

and copies all modules into the current
archive

addlib module Adds the specified modules to the current archive.
Clear Deletes all modules from the current archive.
Create archivefile Creates a new archive with a filename of archivefile.
Delete module Deletes the specified module from the current archive
Directory archive
[(modules)]
[outputfile]

Lists the modules contained in the specified archive
file. If a module list is specified within parenthesis
following the archive name, then only modules
matching the list will be shown. The output may
optionally be directed to a file by specifying the
outputfile parameter.

End Exit from VMAR with an exit code of zero. Does not
automatically save changes to the current archive. If
you do not use SAVE before END, then your changes
are lost.

Extract modulelist Extract the specified module(s) from the current
archive and save them into the current disk directory.

List Display the contents of the current archive.
Open archive Opens a new archive.
Replace module Replaces the specified module within the archive with

a file of the same name in the current disk directory.
Save Saves changes to the current archive. Any changes to

the archive will not be permanent until this command is
used.

Verbose Turns on the verbose mode of each command.

11.9 VMNM Utility
The VMNM utility displays information about symbols contained in executable
program files, object modules or library archives. This can be one of the most
useful tools for debugging.

The format of the VMNM command line is:

vmnm [options] [objfiles]

The objfiles parameter is a list of executable program files created by the linker,
object modules created by the assembler or compiler, or library archives created
with VMAR. The command options are described in the table below. Please note
that all commands and modifiers are case-sensitive:

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 27

Option Description
-A or
-o or
--print-file-name

Print the module name next to each symbol, rather
than just once at the top of each group.

-a or
--debug-syms

Display special debugger-only symbols normally not
listed.

-B Specify BSD-format output. Same as “–f bsd”.
-C or
--demangle

Demangle encoded C++ names into user-level names.

-D or
--dynamic

Display dynamic symbols

-f format Specify output format. The format parameter should
be “bsd”, “sysv”, or “posix”. The default format is “bsd”.

-g or
--extern-only

Display only externally defined symbols

-n or
--numeric-sort

Sort symbols according to address, rather than name

-p or
--no-sort

Do not sort symbols. Output them in order found.

-P or
-portability

Use Posix.2 format output. Same as “-f posix”.

-s or
--print-armap

When input file is a library, include the archive object
module index.

-r or
--reverse-sort

Reverse the order of the symbol sort.

--size-sort Sort symbols by size. Size is determined by the next
highest symbol.

-t radix or
--radix=radix

Use radix for printing symbol values. Valid values are
“d” for decimal, “o” for octal, or “x” for hexadecimal.

--target=bfdname Specify a non-standard object file format
-u or
--undefined-only

Display only undefined symbols (those external to
object module or library).

--version Display the internal version number of VMNM.
--help Display available command line options for VMNM.

11.9.1 VMNM Output Format
The output format of VMNM changes depending on the command line options.
The default format is “bsd”. Examples of the available output formats are shown
below.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 28

-B or –fbsd (BSD Format) = <value> <flag> <symbolname>

8001b382 T _CopyFromMPE
00000000 a _FALSE
00000a10 A _FXCode_size
8009ffb0 ? _FXCode_start
8009b124 D _OutputPeriod
8009b104 d _PCMCallDataReq0

-P or –fposix (Posix format) = <symbolname> <flag> <value>

_CopyFromMPE T 8001b382
_FALSE a 00000000
_FXCode_size A 00000a10
_FXCode_start? 8009ffb0
_OutputPeriod D 8009b124
_PCMCallDataReq d 08009b104

-fsysv (SYSV Format) = <symbolname> <value> <flag> <additional info>

Symbols from vmballs.cof:

Name Value Class Type Size Line
Section

_CopyFromMPE |8001b382| T | | | |
_FALSE |00000a10| a | | | |
_FXCode_size |00000a10| A | | | |
_FXCode_start |8009ffb0| ? | | | |
_OutputPeriod |8009b124| D | | | |
_PCMCallDataReq0 |8009b104| d | | | |

11.9.2 Symbol Flags
Regardless of the output format, each symbol is given a flag consisting of a single
character that indicates what program segment it belongs to. A lowercase flag
indicates a symbol that is local to the module in which it is defined. An uppercase
flag indicates a symbol that is defined as global.

Symbol
Flag

Meaning

“?” Symbol defined as external, but the segment is not defined
within the current module.

“a” or “A” Symbol value is absolute.
“b” or “B” Symbol is located in the “BSS” segment.
“c” or “C” Symbol is located in the “common” segment.
“d” or “D” Symbol is located in the “data” segment
“g” or “G” Symbol is located in the “sdata” segment
“r” or “R” Symbol is located in the “Rdata” or “rodata” segment
“s” or “S” Symbol is located in the “sbss” segment.
“t” or “T” Symbol is located in the “text” segment
“u” or “U” Symbol type is not defined within the current module.
“w” or “W” Symbol is located in the “dtram” segment.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 29

“x” or “X” Symbol is located in the “dtrom” segment.
“y” or “Y” Symbol is located in the “iram” segment.

11.9.3 Segment Descriptions
Segment

Name
Description

“bss” or
“sbss”

BSS stands for “Block Storage Segment” and SBSS stands
for “Small BSS”. These segments normally contain storage
space for variables which are not pre-initialized.

“common” Reserved storage space for items that are not pre-initialized.
Basically the same as the BSS segment.

“rdata” or
“rodata”

ROM-Data or “Read-Only Data”. This segment normally
contains pre-initialized data intended to be read-only (such as
would be placed into ROM).

“text” Contains executable program code.
“data” or
“sdata”

Contains pre-initialized data. The “sdata” segment is the
“Small data” segment.

“dtram” This segment defines the data area of an MPE’s local data
memory space.

“dtrom” This segment defines the data area of an MPE’s ROM
address space.

“iram” This segment is located at the beginning of an MPE’s local
instruction memory space.

11.9.4 Getting a Symbol Map
Perhaps the most common use of VMNM is to extract a list of symbols from an
executable COFF file. This would be done via the command:

vmnm –fsysv –n program.cof >map.txt

This reads symbols from PROGRAM.COF, sorts the output according to the
symbol’s numerical value, and formats the entire list into a table. Then the results
are redirected from the console to the MAP.TXT file.

11.9.5 Symbol Names
There are a few things to keep in mind about the symbol names displayed by
VMNM:

• Symbols created by the C/C++ compiler will have a leading underscore
character. So if you’re looking for the symbol matching the “draw_water”
function, you really need to look for “_draw_water”.

• Function names in C++ may be mangled by the compiler. Use the “-C” option
to demangle the function names.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 30

• Non-global symbols may be used and therefore will appear in the output of
VMNM over and over again, making debugging difficult. To avoid this
problem, simply use more unique symbol names.

11.9.6 Symbol Values, Object Modules, & The
Linker

When reading the output from VMNM, it is important to know how something
about how symbol values work and how they are manipulated by the linker.

Within an object module, either as a separate file or a module within a library
archive, symbols which are defined within the object module itself are considered
to have values that are relative to the base address of the segment in which the
symbol is located, within that particular module.

In other words, if the “program.o” object module contained a function named
“flowing_water” that is located 120 bytes from the beginning of the “text”
segment, then the “flowing_water” symbol will be given a value of 120.

On the other hand, if the “graphics.o” object module contained a function
named “draw_water” that is also located 120 bytes from the beginning of the
“text” segment within that object module, then the “draw_water” symbol will
also be given a value of 120.

The symbol values overlap because each object module was created individually
without any knowledge of the other. It’s OK, because object modules are not
designed for direct usage. They are supposed to be processed by the linker to
create an executable program file.

The linker is responsible for taking a number of separate object modules and
combining them together to create a program file, all while making sure that the
“flowing_water” function and the “draw_water” function are given their
own space that doesn’t overlap.

(This is a very simple explanation of what the linker does. We’re simplifying quite
a bit here, so don’t take this as an exact description of the linker’s behavior.)

Once the linker knows what object modules must be combined to create the
program file, it copies the “text” segment from each one into the output file. This
process is repeated for the “data” segment, the “bss” segment, and any other
segments found within the object modules.

In the process, the linker changes symbol values and references to reflect how
things have been combined together in the output file. Symbol values and
references are defined as relative positions from the start of their respective
segments.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 31

If the linker is creating a executable program file that is meant to be loaded to an
absolute fixed address, as is the case with NUON, there is one last step. The linker
must now step through the list of symbols and change each symbol value or
reference into an absolute address relative to the load address that has been
specified.

11.10 COFFDUMP Utility
The COFFDUMP utility displays information about the contents of a COFF object
module or executable program file.

The format of the COFFDUMP command line is:

coffdump [options] [objfiles]

The objfiles parameter is a list of executable program files created by the linker,
object modules created by the assembler or compiler, or library archives created
with VMAR.

The command options are described in the table below. Please note that all
commands and modifiers are case-sensitive:

Option Description
-h Show headers for each program segment

defined in file. See the description of
the output below for more information.

-r Dump information about any objects in
the file which require relocation
(linking)

-s Dump all symbols described within the
file

These options may be provided in any order. The order does not affect the
program output.

11.10.1 COFFDUMP Output
Each of the command line options for COFFDUMP produces a different type of
output.

11.10.1.1 Program Section Information

Here’s the information generated by using the “-h” option with an executable
program file:

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 32

C:\vmlabs\sample\Miscellaneous\showpic>coffdump -h showpic.cof
 showpic.cof
16 sections
41185 symbols
Entry at 0x80010000
Target: mpe3
Name Addr Rta Size Nrel Nlnn Flags
00 text :80010000 80010000 107112 2082 20209 00200060
01 data :8002a270 8002a270 1386976 30 0 00100040
02 bss :8017cc50 8017cc50 176 0 0 00100080
03 comm :8017cd00 8017cd00 352 0 0 00040080
04 ctors :8017ce60 8017ce60 12 1 0 00040040
05 dtors :8017ce6c 8017ce6c 8 0 0 00040040
06 PATCH :8017ce80 8017ce80 752 50 29 00100060
07 rodata :8017d170 8017d170 2600 208 0 00040040
08 bicC :8017dba0 8017dba0 3576 21 143 00200020
09 bicI :8017e9a0 8017e9a0 6736 32 473 00200020
10 bic1 :80180400 80180400 2688 9 117 00200020
11 bic0 :80180e80 80180e80 3032 7 124 00200020
12 biostab :80181a60 80000000 6592 0 0 00100080
13 cookie :80183420 8000f000 336 0 0 00040080
14 biostb2 :80183570 20100c80 528 0 0 00100080
15 heap :80183780 80183780 16 0 0 00200080

First it shows the name of the file, in case you’ve specified more than one. Then it
shows how many program sections there are, how many symbol entries, what the
runtime start address should be, and finally the NUON MPE which is the target.

The remainder of the output is a list of information for each of the program
sections in the file. For each section, the information from the table below is
provided:

Section number
Name Section name (up to 8 characters)
Addr Load address for section
Rta Runtime address for section. This is usually the same as

the load address, but may be different in the case of a code
overlay which will be copied to the runtime address when
needed.

Size Size in bytes of the section
Nrel Number of relocated items
Nlnn Number of line numbers (source-level debugging

information)
Flags The low word indicates the type of program section(s) that

are represented:

0x20 = text (program code)
0x40 = data (initialized data)
0x80 = bss (block storage segment, otherwise known as

uninitialized data space)

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 33

The high word indicates the alignment requirements for the
section.

11.10.1.1.1 A Very Special Note About The “heap” Section

Please note that the “heap” section is normally the last one in a COFF file. This
represents the memory heap that is used to satisfy memory allocation requests for
functions like malloc() and the C++ new operator. Don’t be alarmed because the
size is just 16 bytes, because this is designed to trigger the C runtime startup code
into expanding the heap at runtime. It will expand the heap to use all available
memory from the end of the program’s load area to the bottom of the stack.

This means you can also control the size of the heap by creating your own custom
heap segment in your program file. If the heap isn’t 16 bytes long then the C
runtime startup code will simply use whatever size is provided.

11.10.1.2 Relocation Information

Here’s the information generated by using the “-r” option:

C:\vmlabs\sample\Miscellaneous\showpic>coffdump -r graphics.o

 graphics.o
1 sections
885 symbols
Relocations for text
0000003a __MemLocalScratch 0802 00000000
0000006a _gl_screenbuffers 0802 00000000
00000070 __DMALinear 0802 00000000
0000007a _gl_drawbuffer 0802 00000000
00000080 __DMABiLinear 0802 00000000
00000138 _gl_drawbuffer 0802 00000000
00000142 _gl_displaybuffer 0802 00000000
0000014e _gl_screenbuffers 0202 00000000
0000015a _mmlSimpleVideoSetup 0802 00000000
00000164 _gl_sysRes 0802 00000000
0000019a _gl_screenbuffers 0802 00000000
000001a0 _gl_sysRes 0802 00000000
000001a6 _gl_displaybuffer 0802 00000000
000001ac _gl_drawbuffer 0802 00000000
000001b2 _mmlInitDisplayPixma 0802 00000000
000001fa _mmlSimpleVideoSetup 0802 00000000

The first value for each item is the offset within the section where the relocation is
to be applied. This is followed by the first 20 characters of the symbol name.

Next is a bitmapped flag value that defines the relocation style and method. The
last value is an adjustment value that is added to the symbol value to obtain a
relocation argument.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 34

11.10.1.3 Symbol Dump

Here’s the information generated by using the “-s” option:

C:\vmlabs\sample\Miscellaneous\showpic>coffdump -s graphics.o
 graphics.o
1 sections
885 symbols
.file 00000000 [D] 103 0 +1
gcc2_compiled. 00000000 [text] 3 4 +0
___gnu_compiled_c 00000000 [text] 3 4 +0
___int32_t 00000000 [D] 13 4 +0
___uint32_t 00000000 [D] 13 e +0
.
.
.

The first item shown for each symbol is the first 20 characters of the symbol name.
This is followed by the symbol value. The value in brackets indicates the section
where the symbol is defined (or “D” for a symbol that’s not part of a section).

The next value indicates the “storage class” of the item. This is followed by a
value representing the symbol type. The last value is an auxiliary record.

11.11 VMSTRIP Utility
The VMSTRIP utility is designed to remove symbols and debugging information
from an executable COFF file. There are main two reasons for doing this. First,
this frequently reduces the size of the COFF file considerably. Second, it makes it
more difficult for someone to disassemble and decipher your code.

The format of the VMSTRIP command line is:

vmstrip [options] coff-file

The command options are described in the table below. Please note that all
commands are case-sensitive:

Option Description
-D Converts symbol references to section

references and removes all symbols.
-E Keep external symbol references
-F Force removal of everything. By default, only

undefined symbols are kept in the output file
-k symbol Keep the specified symbol even if it is not

referenced.
-o filename Specify the output filename. By default, if

none is specified, the output file name is
STRIP.OUT in the current directory.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 35

Option Description
-r symbol Removes the specified symbol even if it

would be removed otherwise.

11.12 VMDISASM Utility
The VMDISASM utility reads an executable COFF program file and disassembles
a specified section.

The format of the VMDISASM command line is:

vmdisasm [options] inputfile range

The command line options are described in the table below. Please note that all
commands are case-sensitive:

Option Description
-a Show real addresses
-n Display labels as addresses

Please note that some versions of the VMDISASM tool display the wrong
command line format when showing a list of the command line options. However,
the format above is correct.

The range parameter defines the starting address and size of the range you wish to
disassemble. Please note that the address is treated as decimal unless you add “0x”
as a prefix. (Unlike many other tools which assume addresses are always in
hexadecimal regardless of prefix.)

Please note how the output changes when different options are used. For example:

C:\vmlabs\sample\showpic>vmdisasm -a -n showpic.cof 0x80010000:20
80010000 mv_s #$8017cc0c,r31
80010006 ld_s (r31),r31
80010008 nop
8001000a mv_s #$00000000,r30
8001000c st_s #$00000000,acshift
80010010 jsr #$80000378

C:\vmlabs\sample\showpic>vmdisasm -a showpic.cof 0x80010000:20
80010000 mv_s #$8017cc0c,r31
80010006 ld_s (r31),r31
80010008 nop
8001000a mv_s #$00000000,r30
8001000c st_s #$00000000,acshift
80010010 jsr pixgo+fffe2338

C:\vmlabs\sample\showpic>vmdisasm showpic.cof 0x80010000:20
+ffff1fc0 mv_s #$8017cc0c,r31

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 36

+ffff1fc6 ld_s (r31),r31
+ffff1fc8 nop
+ffff1fca mv_s #$00000000,r30
+ffff1fcc st_s #$00000000,acshift
+ffff1fd0 jsr pixgo+fffe2338

C:\vmlabs\sample\showpic>vmdisasm -n showpic.cof 0x80010000:20
80010000 mv_s #$8017cc0c,r31
80010006 ld_s (r31),r31
80010008 nop
8001000a mv_s #$00000000,r30
8001000c st_s #$00000000,acshift
80010010 jsr #$80000378

11.13 VMOCOPY Utility
The VMOCOPY utility copies the contents of one object module to another,
optionally performing a format conversion in the process.

The format of the VMOCOPY command line is:

vmocopy [options] infile [outfile]

The infile parameter specifies the source file. The outfile parameter is optional. If
present, it defines the name of the output file. If absent, then a temporary file is
created, and after processing is finished, the input file is overwritten.

The command options are described in the table below. Please note that all
commands are case-sensitive:

Option Description
--adjust-start=increment Adjust the starting address of the file by

adding increment. Note that some object file
formats may not support this.

--adjust-vma=increment Adjust the address of all sections, as well as
the start address, by adding increment. Note
that some object file formats may not support
this.

--adjust-warnings Issue warnings is a section specified via the
“—adjust-section-vma” option does not exist.
(default)

-b byte or
--byte=byte

Discard file contents, except for every byteth
byte.

The byte parameter should be in the range of
0 to interleavefactor-1, where interleavefactor
is the value specified using the “-i” command
option, or the default value of 4.

This option is used to create source files for
multiple ROM or EPROM chips.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 37

Option Description
--debugging Convert debugging information, if possible.

Default for this option is FALSE.
-F fmt or
--target=fmt

Specify that the original file uses the object
code format specified by fmt, and rewrite it in
the same format. If this option is not used,
VMOCOPY will attempt to deduce the source
format.

See the File Format Types section below for
more information.

-g or
--strip-debug

Remove debugging symbols only

--gap-fill=value Fill gaps between sections with the specified
value. This is done by increasing the size of
the section with the lower address, then filling
in the gap with bytes containing value.

--help Display help about command line options
-I fmt or
--input-target=fmt

Specify that the input file uses the object
code format specified by fmt. If this option is
not used, VMOCOPY will attempt to deduce
the source format.

See the File Format Types section below for
more information.

-i interleavefactor or
--interleave=interleavefactor

Specify the interleave factor to use in
conjunction with the “-b” command option..

-K symbolname or
--keep-symbol=symbolname

Keep only symbolname from the source file.
May be used multiple times to specify
multiple symbols.

-N symbolname or
--strip-symbol=symbolname

Remove symbolname from the source file.
This option may be used multiple times for
multiple symbols. May be combined with –K
option.

--no-adjust-warnings Disable warnings in the event that a section
specified via the “—adjust-section-vma”
option does not exist.

-O fmt or
--output-target=fmt

Specify that the output file uses the object
code format specified by fmt. If this option is
not used, VMOCOPY will use the source
format.

See the File Format Types section below for
more information.

--pad-to=address Pad the output file until address is reached.
The size of the last section is increased to
match. The extra space is filled in with the
value specified for the “—gap-fill” option, or
the default of zero.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 11 - 38

Option Description
-R sectname or
--remove-section=sectname

Remove the section specified by secname
from the output file. This option may be used
multiple times for different sections. Note
that using this option incorrectly may make
the output file unusable.

--remove-leading-char Some object file formats use a special
symbol at the start of every symbol, such as
an underscore. This option will remove the
first character from all global symbols.

-S or
--strip-all

Remove all symbols.

--set-section-flags=
section=flags

Set the flags for the specified section. The
flags argument should be a comma-
separated string of flag names: alloc, load,
readonly, code, data, rom.

Not all flags are supported by all object
formats.

--set-start=value Set the starting address of the file to value.
Note that some object file formats may not
support this.

-v or
-verbose

Verbose output. List everything that is
modified. For archives, this lists all
members.

-V or
--version

Display VMOCOPY’s internal version number

-X or
--discard-locals

Remove compiler-generated local symbols
(usually starting with “L” or “.”)

-x or
--discard-all

Remove all non-global symbols.

11.13.1 File Format Types
Certain command options require that a file format be specified. This should be
one of the formats shown in the table below:

Format Name Description
oz-local-coff NUON-specific flavor of the COFF format

(default file format)
srec S Records

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 12 - 1

12. NUON Development System
Documentation

This chapter will provide an overview of other pieces of documentation that are
available for the tools and libraries that make up the NUON SDK.

Basic introductory documentation for the main tools is provided in chapter 11. For
some tools, no further documentation is required. For others, the information in
chapter 11 just scratches the surface.

Almost all documents are available in an online readable form, either as Adobe
Acrobat files which can be viewed with the Adobe Acrobat reader, or else as
HTML files which can be viewed with a web browser such as Microsoft Internet
Explorer or Netscape Navigator. Contact VM Labs Developer Support if you are
unable to view these files.

Some of the documents mentioned in this chapter are also available in hardcopy.

For each document, we’ll list the title, the format(s) available, and give a brief
description of the contents.

Documents in online format are always located in the VMLABS\DOC directory or
a subdirectory, with the exception of the main SDK README file, which is
located in the VMLABS directory.

The documents are grouped into separate sections for Tools, System & Hardware,
and Libraries. Documents regarding tools that are specific to a particular library
are listed along with the library.

12.1 Tools
Chapter 11 includes a basic introduction and reference for several tools in the
NUON SDK. Additional documentation may also be found in the following
documents.

Please note that the titles of some documents may be changed to specify “NUON”
rather than “Merlin”.

Title Description Format
Optimizing Your LLAMA A step-by-step tutorial to hand

optimizing assembly code for
NUON using the Llama
assembler

HTML

LLAMA User's Manual This tells you everything there is
to know about the Llama
assembler.

PDF

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 12 - 2

Title Description Format
NUON GCC README NUON-specific details about the

C/C++ compiler
HTML

Using GNU CC The basic non-NUON specific
user’s manual for the C/C++
compiler.

PDF

GNU Make Manual Details about the GNU Make
utility.

PDF

Xlisp Manual An introduction and manual for
the X-Lisp programming
language used by the Puffin
debugger.

PDF

Xlisp Tutorial A tutorial showing how to get the
most out of the Xlisp
programming language built into
the Puffin debugger.

PDF

Puffin API Basic documentation for the
Xlisp API commands provided
with the Puffin debugger.

PDF

12.2 System & Hardware
Title Description Format
BIOS Overview PDF
NUON Multi-Media
Architecture MMP–L3C
Specifications

The basic documentation for the
NUON processor. Includes an
assembly language reference,
register documentation, and tons
of other important details.

Printed

12.3 Libraries
Title Description Format
Merlin Troubleshooting This document discusses a

number of programming related
problems and potential solutions

PDF

Jeff Minter’s Object List API Document describing the C/C++
level API for Jeff Minter’s Object
List sprite library

PDF

Merlin 2d Library API for 2d graphics (lines,
circles, text, etc.)

PDF

Merlin 3d Library Details about the original Merlin
3d library.

PDF

mGL 3D Graphics Library Details about the mGL 3D
Graphics Library

PDF

M3DL Graphics Library Details about the M3DL 2D & 3D
Graphics Library

PDF

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 12 - 3

Title Description Format
Merlin Utility Functions
Programmer’s Manual

Details about the Merlin Utilities
library

PDF

Merlin Synth API Details about the Merlin Synth, a
General MIDI compatible
synthesizer.

PDF

12.3.1 Sample Program Source Code
At the current time, there is no individualized documentation for the various
sample programs in the NUON SDK. We do hope to address this situation in the
future. The most likely scenario will be that each sample program will come with
an HTML document that provides a basic overview of the source code.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 12 - 4

This page intentionally left blank.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 13 - 1

13. Running Your First Program

This section will walk you through the steps involved in compiling and executing
your first NUON sample program.

At this stage, you should have all of your hardware connected and configured as
described in the Hitchhiker’s Guide To NUON document. You must also have
downloaded and installed the NUON SDK.

13.1 Check your configuration
If everything is installed and connected correctly, you should be able to reset the
NUON development system using the command line:

mload -!

The screen should blink, change to a color static-like display for a moment, then
show either a vertical color bar test pattern or the NUON logo. If this fails,
continue through the troubleshooting information below. Otherwise, you can skip
ahead to section 13.2.

If your machine does not respond, cycle the power and try again. If it still doesn’t
work, then try this:

ping <ip address>

where <ip address> is the TCP/IP address that has been assigned to your NUON
development system. If the network connection is being located correctly, you’ll
get a message like this:

C:\vmlabs>ping 192.1.6.222

Pinging 192.1.6.222 with 32 bytes of data:

Reply from 192.1.6.222: bytes=32 time=6ms TTL=60
Reply from 192.1.6.222: bytes=32 time=2ms TTL=60
Reply from 192.1.6.222: bytes=32 time=5ms TTL=60
Reply from 192.1.6.222: bytes=32 time=4ms TTL=60

Note that the numbers returned may be different from machine to machine.

If you’re able to “ping” the machine, then you should double check that the
MD_PORT environment variable is set correctly as specified in section 9.3.

If your machine does not respond, you’ll get a message like this:

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 13 - 2

C:\vmlabs>ping 192.1.6.226

Pinging 192.1.6.226 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

This most likely indicates that the network configuration is not correct. In rare
cases, it may indicate a hardware problem.

Make sure that everything is connected properly and configured correctly, as
shown in the Hitchhiker’s Guide To NUON document. If all else fails, contact
VM Labs Developer Support.

13.2 Your First Sample
This section will walk you through the process of compiling and running a simple
NUON program written in C.

13.2.1 Compiling A Sample Program
1) Change to the \VMLABS\SAMPLE\HELLO-WORLD directory. This

folder contains a very simple “hello world” sort of sample program.

2) Execute the GMAKE utility. This utility will execute the C compiler to
compile the source code according to the rules specified in the
MAKEFILE. This should result in output that looks similar to this:

C:\vmlabs\sample\hello-world>gmake

mgcc -O3 -g -mreopt -Wall -mrom -mpe3 -c hello.c -o hello.o

mgcc -mrom -mpe3 -o hello.cof hello.o -lmutil

The line breaks may be formatted differently on screen.

Let’s go over the output from step 2 and get into the details of what’s being done.

The tool being called by GMAKE is the MGCC program, which is a driver
program for the GCC C/C++ compiler. It provides a single interface to the C
compiler, assembler, and linker. It’s essentially equivalent to the basic “cc”
program included with most command-line-oriented C/C++ compilers.

Here MGCC is being called twice in a row by GMAKE. Let’s look at the first call
and describe each of the options specified.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 13 - 3

The command-line argument “-O3” specifies that optimization level 3 should be
used.

The “-g” option specifies that source-level debugging information should be
included in the final output file.

The “-mreopt” option specifies that the assembler should use a special
optimization process.

The “-Wall” option tells the compiler should display all warnings.

The “-mrom” and “-mpe3” options tell the compiler that the program is intended to
run on a ROM based system with MPE 3 as the main processor.8

The part that reads “-c hello.c” specifies that the compiler should compile the
source file hello.c and then exit, without calling the linker.

The last part of the line, “-o hello.o” specifies that the name of the output file being
created should be HELLO.O.

Now let’s look at the second call to the MGCC program again. This time, a
different set of arguments is used.

Once again, the “-mrom” and “-mpe3” options tell the compiler and linker that the
program is intended to run on a ROM based system with MPE 3 as the main
processor.

The “-o hello.cof” argument specifies that the name of the output file should be
HELLO.COF. This is followed by the name of the HELLO.O file, which will be
passed to the linker to build an executable program file.

The “-lmutil” at the end of the line specifies that the linker should include the
library file LIBMUTIL.A in the link. This file is assumed to be located in the
“LIB” directory that is part of the NUON SDK.

13.2.2 Running The Sample Program
1) Before you execute the sample, make sure the machine has been reset.

You may cycle the power, or enter the command:

mload -!

This command will reset the machine and ensure that it is ready to
download new code.

8 These compiler options are now the default mode of operation. Therefore, it’s possible that

a revised version of the sample program code may remove them.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 13 - 4

2) Now you can download the sample we just compiled by using the
command:

mload –p3 –n hello.cof -r

The “-p3” portion of the command-line specifies that MPE 3 is the target
for the options that follow. The “-n” option tells MLOAD that the ROM
BIOS is already running, so that it takes appropriate care during the
program download. The “hello.cof” file is the name of the executable that
was created earlier. Finally, the “-r” option specifies that it should start
running the code when the download is complete.

3) You should now see the output of the sample program on the TV/monitor
screen connected to your NUON development system.

If the MLOAD command displays any error message in regards to downloading
the program, try turning the NUON system off for a moment, and then try again
starting at step 2.

You’ll note that the MLOAD program is used quite a bit. In fact, it is your main
interface to the NUON system in most cases.

All of the NUON samples are also configured so that the MAKEFILE contains the
commands needed to build and execute the program in one step. Simply change to
the desired sample directory and issue the command:

gmake load

This will invoke the GMAKE tool to build the program and then load it.

13.3 Additional Samples
Now you’re ready to run more sample programs from the NUON SDK. Please
note that there are a wide variety of samples covering different topics.

Many samples are intended to show a single specific idea, while others show off a
variety of techniques.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 14 - 1

14. NUON File Server

The NUON File Server allows programs running on NUON to access the console
device and file system of the host PC.

The file server is built into the MLOAD tool.

The file server is a development tool only and is not available on consumer
machines. Therefore, the standard C & C++ library functions for file I/O may not
be used in your final product.

14.1 File Server Modes
There are two basic modes of operation for the file server. The first mode has the
file server pretending to be a native file system as referenced through the C/C++
standard library functions. The second mode has the file server pretending to be a
DVD disc or similar media, responding to NUON’s media access BIOS functions.

We’ll discuss each mode separately below.

14.1.1 File System Server
Adding the “-fs” option to the end of the MLOAD command line will cause it to go
into file system server mode and begin serving files after everything else has been
done.

In file system server mode, MLOAD listens for commands coming from the client
(the application running on your NUON development system), and then echoes
those commands to the PC file system, acting as a conduit for the data that is being
transferred between the PC file system and the NUON application.

14.1.2 Media Server
Adding the “-me” option to the end of the MLOAD command line will cause it go
into media server mode and begin responding to media access requests coming
from the NUON system.

In media server mode, MLOAD listens for data requests coming from the client,
and transfers the appropriate portions of the specified data file.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 14 - 2

14.2 Debugging & The File Server
We have considered the possibility of ultimately incorporating the file server
functions into the PUFFIN debugger. In the meantime, you can run PUFFIN
concurrently with MLOAD. You should use MLOAD only as the file server, and
use the debugger for loading and executing your program.

14.3 Client Side — File System Server
The client software needed to access the file server is built into the NUON version
of the standard C/C++ library. When your NUON program calls any function that
performs file I/O, the library’s device driver sends a message to the ACE360 or
PPC860 interface board. This message is then sent from the interface board to the
host PC, where it is received by the file server. Then the required data transfer
operation takes place between the NUON system and the host PC.

14.3.1 Examples
When you call the printf() function, the resulting output is sent to the stdout
stream, which is normally opened to the character file attached to the console
device. The text to be printed is sent to the host PC, where the file server sends it
to the console.

When you call scanf(), the NUON application sends commands to the host PC
asking for data from the stdin console device, which the file server sends back to
the NUON as it is typed.

Aside from the console device, your NUON application can also read, write, and
create files on the host PC. For example, the program below would appear to
function identically when run on NUON with the file server and when as a native
program on the host PC:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *pcfile;
char linebuf[300];

 pcfile = fopen("fstest.c", "r");

 if(pcfile)
 {
 // read a string from PC
 fgets(linebuf, 299, pcfile);

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 14 - 3

 // Make sure we're null-terminated
 linebuf[299] = 0;

 // print string back to PC
 printf("%s", linebuf);
 }
 fclose(pcfile);
}

This example opens the file named “FSTEST.C”, attempts to read 299 characters
from the file, prints them to the console device, and then closes the file.

14.3.2 Current Directory
From the NUON’s perspective, all file I/O functions are performed relative to the
directory from which MLOAD was executed. From the user’s perspective, it’s as
though a native PC program were running.

14.3.3 Available Functions
As of this writing, the following low-level file I/O functions are available through
the file server.

open() close() read()
write() isatty() lseek()
stat() fstat() ioctl()
link() unlink()

Many of the standard C library’s I/O functions are not listed here, such as printf()
or fopen(), because they do not actually perform any I/O tasks directly. Instead,
they call the low-level functions listed above, and therefore take full advantage of
the file server.

Additional functions may be added to a later version of the file server if a strong
need arises.

14.4 Client Side — Media Server
For media access, using the file server is a bit different than using the standard
C/C++ library functions. The first important difference is that the NUON
application has the choice of accessing either the file server or real media.

The NUON’s media access functions support the notion of a “BOOT device”
which refers to the device and media from which the application was executed. In
most cases, an application will simply read data through this device and not worry

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 14 - 4

about what type of device it is. In fact, this is the recommended mode of operation
as it makes it easier for a program to be delivered using a variety of media.

When your application is started via the MLOAD program from your host PC, then
the “boot device” is the network connection to the file server running on your host
PC. When your application is started from DVD, then the boot device is the DVD.

During the development process, it can be useful to access a device directly, rather
than using the “BOOT device”. An application in the development stages may
wish to access some data from the host PC through the file server, and other data
from a disc in the DVD drive. For example, movie sequences or streaming audio
data could be taken from the DVD, while level data or code overlays are taken
from the file server on your host PC.

14.4.1 More Information To Come
More information on the media server mode of the file server will be added once
this mode of operation is fully functional.

14.5 Using The File Server Intelligently
The file server is one of the most powerful and useful tools that a NUON developer
can use in creating their application.

It’s also one of the easiest ways to mess up, if you’re not careful.

Right now, the file system server mode is very useful as debugging tool, and also
as a temporary means of data access . However, this is where the danger lies, so
please read all of this chapter carefully in order to avoid some of the common
pitfalls.

14.5.1 Using The File Server For Debugging
The file server is ideally used as a debugging tool, using a wide variety of
techniques. Here are just a few suggestions:

• The printf() function can be used to display warnings or ongoing status
information from the NUON application.

• Your program can use scanf() to read input from the host PC’s console and
then use that input to control the program’s actions.

• Your NUON application can create log files that can be used to save important
details regarding the program’s execution. For example, you might dump a
list of which objects in your 3D world were rendered for a given frame.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 14 - 5

• Profile performance by writing out the system clock values before and after a
function call. (Make sure you don’t include the printf() function or file I/O in
the part that gets timed.)

• Your program can perform hex data dumps from your memory buffers to the
PC console or to a file.

• Your program can use ANSI terminal escape codes to format custom
debugging menus or interfaces on the host PC.

14.5.2 Using The File Server For Media Access
The file server can be used for media access, and because it is called via standard C
library functions, it would be very easy and very convenient to use those functions
wherever needed throughout your application to load all of your data files at
runtime.

Please don’t do it that way!

First of all, the file server is strictly for development purposes only. On a consumer
machine, there will be no file server and therefore the standard C library functions
will not be available.

This doesn’t come as a big surprise to most developers. But it would be easy to
use those standard C library functions anyway, expecting that there will be a fairly
close correlation between them and the system-specific file I/O functions, and
therefore that it will not be difficult to change everything as needed later.

That would be a mistake. The media access functions in the NUON BIOS are
actually quite a bit different from the standard C library functions. Your program’s
data reading should consider this from the very beginning of your project.
Otherwise, if your program uses the standard C functions for all of its data reading,
it will require a significant code rewrite to switch over to the NUON BIOS media
access functions.

14.5.2.1 NUON BIOS Media Access –vs– Standard C Library
I/O

The NUON BIOS includes a number of functions for media access which have
been specifically designed for optimal performance on an embedded system where
most media access is reading from read-only media and where the end user will
never have to deal with manually saving or retrieving files. These functions are
optimized for performance and simplicity.

The file I/O functions in the standard C library, on the other hand, are designed
primarily for accessing read/write media on general-purpose computer systems.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 14 - 6

The library has been designed around the idea that the user may arbitrarily access
any particular file at any time, create or delete files, and otherwise manipulate the
contents of the media. The library must allow access to a relatively much more
complex file system. Furthermore, because of the way the standard C library
evolved into a standard, there is quite a bit of overlapping functionality between
different functions.

The bottom line is that the standard C library file I/O functions are
overcomplicated and inefficient with regards to the needs of a NUON application.

If you haven’t read the NUON BIOS documentation yet, specifically the section
covering the media access functions, you should do so now. These warnings
regarding the usage of the standard C library file I/O functions will then make a lot
more sense.

14.5.2.2 Doing It Right

The ideal means of using the file server for media access is to create functions that
are as close as possible to the NUON BIOS media access functions. In particular,
these functions would accept the same arguments but have different names.

For example, instead of calling MediaRead(), your application would call
My_MediaRead(). This function would be implemented as part of your
application and would call the standard C library functions to access the
appropriate data file on the host PC.

VM Labs intends to offer some form of media emulation that can be accessed
using the BIOS media access functions via an emulation device type.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 15 - 1

15. NUON Programming Guidelines

Even though it comes towards the end of this document, this chapter is one of the
most important. This is where we’ll give you all of the important little rules that
must be followed in order to ensure that your program runs smoothly.

This chapter is divided into a number of subsections that cover different areas such
as memory usage, DMA operations, media access, and so forth.

15.1 Memory Usage

15.1.1 Low BIOS Memory Area
Unless otherwise specifically instructed by a BIOS or system library function, your
program should not access system memory locations from 0x80000000 to
0x8000FFFF. This area is reserved for use by the BIOS and system firmware.

Accessing this range may corrupt data or code necessary for proper operation of
the hardware.

15.1.2 High BIOS Memory Area
An application should not access system memory locations ranging from
0x80760000 to 0x807FFFFF. This high memory area is reserved for use by the
BIOS.

Accessing this range may corrupt data or code necessary for proper operation of
the hardware.

15.1.3 Presentation Engine Memory Area
If a program uses the DVD Video Presentation Engine (aka “PE”) for playing full-
screen video, then the range of 0x804A0000 to 0x8075FFFF must be avoided
whenever the PE is active.

When the PE is inactive, this memory may be used for other purposes.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 15 - 2

15.2 Runtime Memory Allocation

15.2.1 C & C++ Runtime Heap Initialization
The standard C/C++ runtime libraries recognize the concept of a “system heap” of
memory that is used for runtime memory allocation using functions like malloc()
and the C++ new operator. The heap is usually considered to be whatever portion
of memory is not used by the operating system or for loading your application.

On a NUON system, there are two types of memory (excluding the built-in
memory): SYSRAM and SDRAM. SYSRAM memory lives on the “Other Bus”
and is where your program code normally resides. SDRAM memory lives on the
“Main Bus” and is used for your video frame buffer(s) and data storage.9

SYSRAM may be accessed via explicit DMA or through the cache mechanism.
SDRAM is normally accessed only via explicit DMA. For this reason, the heap is
normally positioned in SYSRAM.

Since the “heap” is actually managed by the runtime library that is linked into your
program’s executable file, there must be a mechanism to allow it to determine the
size and location of the heap at runtime. This is done by having the runtime library
define a special program segment named “heap” where it reserves 16 bytes of
space.

At runtime, when the memory allocator is initialized, it uses the starting address of
the “heap” segment as the start of the system heap. Then it looks for the size of the
“heap” segment. If it’s 16 bytes, it expands the heap size to extend all the way to
the bottom of the stack area.

In order to use this automatic heap initialization process, it’s required that the
“heap” segment will be the very last thing in memory before the program stack.
However, as we’ll see in section 15.2.2, it is possible to do your own heap
management.

15.2.2 Managing Your Own Heap
Sometimes it’s useful to manage your own heap initialization, rather than allowing
the runtime library to do it automatically. You might want to force a certain
maximum size, or you might want to avoid conflicts with other memory usage.

9 For more information about the different types of memory and memory busses, please refer

to the NUON processor’s Programmer’s Guide document.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 15 - 3

Regardless of your motivation, initializing your own heap is pretty simple. All you
really need to do is reserve space within a special program segment named “heap”.
The short assembly language file shown below would do just that:

 .segment “heap”

 .ds.b 0x00100000

This would reserve 1 million bytes of storage in the “heap” section. The linker
would add this to the 16 bytes that it already reserves.

At runtime, the memory allocator initialization code would see that the “heap”
segment is greater than 16 bytes, and then it would use the existing location and
size without any changes.

15.2.3 Avoiding Conflicts Between the Heap And
Other Memory Usage

If you use the linker’s ability to position a particular section of your program at a
specific memory address in SYSRAM, then you run into the possibility that there
will be a conflict between the memory load map of your COFF file and the C/C++
runtime library’s notion of where the system heap should be located.

Please make sure that you have read section 15.2.1 for an overview of how the
heap is allocated.

The problem occurs because when you tell the linker to explicitly position a
segment, it doesn’t change the position of any other segments. Each segment is
normally positioned immediately after the end of the previous one, except for any
alignment padding. So what usually happens is that the section you positioned is
right in the middle of memory between the start of the heap and the bottom of the
stack. When the heap gets resized, the runtime library has no way to know that this
other program segment is already taking up some of the memory in question.

As your program does memory allocation, the memory blocks being handed out
will eventually overlap whatever was in the other program segment. When that
happens, one item or the other will be corrupted and the program most likely
crashes.

Fixing the problem is quite simple, and there’s a choice of at least two methods
you can use. First, you can set up your own heap so that the runtime library won’t
resize it. With this method, you’ll at least get a warning from the linker if the
program sections are going to overlap. See section 15.2.2 for more information.

Alternately, simply tell the linker to explicitly position the location of the “heap”
section so that it comes after any other sections that you are explicitly positioning.
Keep in mind that this may reduce the total available heap space.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 15 - 4

15.2.3.1 Using the COFFDUMP tool to help avoid problems

The COFFDUMP tool can be very helpful in determining if there are any conflicts.
If you do:

coffdump –h program.cof

You will get a list of all the program sections. If the “heap” section is 16-bytes,
you need to make sure that no other section starts at a higher address in SYSRAM.
If one does, then you’ll have to change something and try again.

15.3 DMA Operations

15.3.1 DMA Transfer Size
Even though the hardware allows larger transfers, it is considered very bad practice
to transfer more than 64 long words (256 bytes) of data in a single Main Bus DMA
operation. This includes the total of a series of DMA operations where the chain
transfer mode is used. It does not apply to batch mode transfers.

Under no circumstances should more than 64 long words be transferred in a single
Other Bus DMA operation. When the bus is especially busy, Other Bus DMA
transfers should be no more than 32 long words (128 bytes).

The reason for the limitation is that longer transfers will monopolize the bus long
enough that real time interrupt-driven processes may not function properly due to
timing and latency issues. This includes operations such as media access, sound
playback and synthesizer operation.

15.3.2 Issuing DMA Commands
If you’re going to perform DMA operations from the primary processor while the
cache is turned on, it is very strongly recommended that you use the BIOS
functions _DMALinear() and _DMABiLinear() rather than directly accessing the
DMA control registers.

The reason for this recommendation is that there are a variety of potential conflicts
between the cache mechanism and other DMA usage. The BIOS DMA functions
are aware of the various issues involved and know how to avoid problems.

However, please be aware that when running code on a non-cached processor, you
will not be able to use the BIOS DMA functions. In this case, you will have to
write your own code that accesses the DMA control registers as needed.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 15 - 5

15.4 Timers & Interrupts

15.4.1 Vertical Blank Interrupt
The NUON has the ability to tie an interrupt process to the vertical blank routine.
This is generally very useful for game programs which must synchronize certain
operations with the display.

However, we very strongly recommend that any code which directly affects the
speed of your game should not use a vertical blank interrupt or counter as a timer.

Different systems may not always synchronize at the same rate. For example,
NTSC systems have 60 vertical blank periods per second while PAL systems have
50. Systems with progressive scan output or HDTV output may handle the vertical
blank differently. For this reason, if you use the vertical blank counter as a timer,
your game may run at drastically different speeds on different systems, or may not
work properly at all on some systems.

It’s perfectly OK to use vertical blank synchronization to change frame buffers, or
do other operations which are tied to the screen display. However, the vertical
blank counter should not be used as a timer for things like moving a sprite a certain
distance, or deciding which frame of sprite animation to show. Use the system
timer instead, as described in section 15.4.2.

15.4.2 Using the System Timer
The NUON system has a built-in timer which should be used to time operations
whenever possible.

For example, if your game wants to have a certain sprite move across the screen at
a certain speed, then it should use the timer to determine how much time has
elapsed since the previous frame was processed. That way, it can determine what
the new position of the sprite should be.

If the game assumed that it should move the sprite a fixed amount for each new
frame, then the movement would be jerky and inconsistent if the game did not run
at the same frame rate all of the time. It would also run at different speeds on PAL
systems versus NTSC systems. However, using the timer to determine how far to
move will work properly under all circumstances.

To use the timer, simply call the BIOS function _InitTimer() at the beginning of
your program to initialize it. Then just call _TimeElapsed() at any time to retrieve
a millisecond timer count:

ms = _TimeElapsed(0,0);

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 15 - 6

It’s possible to get finer resolution, as detailed in the BIOS documentation.
However, for most purposes in a game, the millisecond counter is more than
sufficient. At 60 frames per second, it’s about 33 milliseconds between frames.
Furthermore, it’s easier to use the millisecond counter in most cases since it’s not
broken into two different values.

15.5 MLOAD

15.5.1.1 Machine Reset via MLOAD

When you use the “-!” command line option to reset your NUON development
system, always make sure that there is a reasonable delay period before you
attempt to download and execute a program. The delay required may vary
depending on the firmware currently installed on your system, but generally about
3-4 seconds is sufficient.

A four second delay may be added after the reset by adding “-w –w –w –w” to
your mload command line immediately following the “-!” option. For example:

mload -! –w –w –w –w –p3 –n program.cof -r

15.6 Media Access
This section under construction.

15.7 MPE Usage
This section under construction.

15.8 More
This section under construction.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 16 - 1

16. FAQ For New Developers

This chapter contains a variety of frequently asked questions on various topics,
along with the appropriate answers.

Each question is only listed once, so if you don’t find what you’re looking for
under one topic, make sure to check under related topics.

This chapter will be updated regularly. For more information relating to
programming issues, please also see the separate document titled NUON
Troubleshooting Guide.

16.1 Communicating With NUON

Q: I have connected the NUON development system to my network, but I cannot
communicate with it from my host PC.

A: Most likely, there is a problem with the IP address setting of your NUON
development system. See chapter 6.2 for details. Otherwise, it’s possible that the
MD_PORT environment variable is not set properly. See section 9.4 for details.

Q: I have two separate NUON development systems connected to my network,
but I can only communicate with one machine at a time. If both machines are
connected and turned on together, I get communications errors from MLOAD. If I
power down or disconnect one machine, it works OK.

A: Both NUON systems may be set to the same IP address. Otherwise, both
systems may have the same MAC address setting. See chapter 6.2 for details.

Q: I made a crossover network cable to connect my PC directly to the NUON
development kit, but they’re not talking.

A: Making your own network cables, especially a crossover cable, is not
recommended. The connections for a crossover cable are easy to get wrong, since
multiple connections must be switched. Also, a homemade cable is more likely to
provide significant amounts of electrical noise that will cause network packet
errors, slowing down transfers and communication.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 16 - 2

16.2 Connections

Q: What's the miscellaneous video connector for? I don't seem to have a cable
that will fit into it!

A: This connector allows you to create your own cable for monitors with non-
standard connections. It uses a standard DB-9 connector because they are readily
available.

Please note that although this connector may appear to be the same type, it is NOT
directly plug-in compatible with the old-style NEC Multisync computer monitor.
An adapter cable can be created for this monitor, however, provided it is one of
those which can display NTSC video.

16.3 Tools

Q: Do the NUON SDK tools work under Windows NT?

A: Yes.

Q: Does the NUON SDK include C++?

A: Most of the libraries provided by VM Labs are C-oriented, but C++ is fully
supported by the compiler for writing your own code.

There was a bug with older releases of the C++ compiler that prevented the
“virtual” keyword from working properly. This was been fixed in subsequent
revisions.

Q: The C compiler is giving me a message saying “Virtual memory exhausted”.
What do I do?

A: The compiler likes lots and lots of memory. Your host computer should have
at least 32mb of RAM, and 64mb won’t hurt.

Secondly, if you’re running an MSDOS Command prompt under Windows 95/98,
then locate the command prompt icon, right-click it, and select “Properties.”

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 16 - 3

Under “memory”, change the “DPMI” setting from “auto” to “65535”. This will
configure things so that the maximum possible amount of memory may be used by
tools running under the command prompt.

16.4 Libraries

Q: Do the runtime libraries use multiple processors?

A: Yes they do. Most of the supplied libraries have the ability to use multiple
processors for various types of 2D or 3D graphics rendering. However, processor
usage is always controllable by the programmer.

16.5 Video

Q: Can the NUON development system be switched into PAL video mode?

A: Not currently. A future revision of the boot ROM will allow you to
configure the video display to choose between NTSC and PAL video output.

Q: Can I use video input?

A: Video input is possible with the addition of a video encoder board to your
NUON development system. These boards are not yet available to developers. An
announcement will be made when something becomes available.

16.6 DVD Reading

Q: Are development units with DVD drives available yet?

A: Yes. DVD drives are included in all development systems currently
shipping, and this has been the case for quite awhile now. If you have an older
system without a DVD drive, contact your account manager at VM Labs regarding
a replacement.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 16 - 4

Q: Can I connect a DVD-ROM drive to my NUON development kit?

A: No. The electronic interface for a DVD-ROM drive is designed to connect to
a computer. The NUON development system expects a bare mechanism, and
customized firmware is required for each different type.

16.7 Inter-Processor Communication

Q: Can a process running C code in one MPE start a process in another MPE?

A: Absolutely. This can be done using the StartMPE() function from the
LIBMUTIL library.

Q: Can a process running C code in one MPE read or write data to the memory
space of another MPE?

A: For regular internal memory, this can be done using the _mpedma() function.
For the register space of another processor, use the _mpedmaregister() function.
Both functions are from the LIBMUTIL library.

16.8 Memory Cards

Q: How much data can be stored on a memory card?

A: At this time, memory cards are expected to have a minimum of 2 megabytes
of storage space. However, this is subject to change.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 17 - 1

17. Glossary

Aries — Code name for the current version (MMP-L3B) of the NUON processor,
the version that will be used in end-user consumer systems.

GCC — The Gnu C Compiler created by the GNU project of the Free Software
Foundation. This compiler is available for most microprocessors and was adapted
by VM Labs for the NUON processor.

Llama — The NUON assembler.

Merlin — This is the original internal name of the VM Labs custom processor, and
in a broader sense the name of the development system hardware. The final public
name is NUON.

MPE — An acronym for “multi-processing element”. It refers to either one of the
four separate modules of the NUON processor, or to a software program intended
to run in a single module.

MPO — NUON Processor Object module. An object module output by the
LLAMA assembler.

NUON — This is the name of the VM Labs custom processor, and in a broader
sense the name of the development system hardware.

Oz — Code name for the original hardware release (MMP-L3A) of the NUON
processor used in development systems only, not end-user consumer systems.

Puffin — This is the name of the debugger/emulator from the NUON development
system.

Puffin TK — This is the name of the version of the Puffin debugger designed to
run under the Tcl/TK graphics toolkit & scripting language.

Puffinw — Version of Puffin designed to run under Microsoft Windows.

12 - F E B- 01 V M L A B S C O N F I D E N T I AL P R O P R I E T A R Y PAGE 17 - 2

This page intentionally left blank.

