
V M L A B S

Nuon Miscellaneous Utility Functions

Programmers’ Manual

April 11, 2001

VM Labs, Inc.
520 San Antonio Rd
Mountain View, CA 94040
Tel: (650) 917 8050
Fax: (650) 917 8052

NUONtm and NUON Media Architecturetm are trademarks of VM Labs, Inc. The information
contained in this document is confidential and proprietary to VM Labs, Inc. and is provided
pursuant to a Non-Disclosure agreement between VM Labs, Inc. and the recipient. It may
not be distributed or copied in any form whatsoever without the prior written permission of

VM Labs.

Copyright notice

Copyright c
1998–2001 VM Labs, Inc.
All Rights Reserved

The information contained in this document is confidential and proprietary to VM
Labs, Inc., and is provided pursuant to a Non-Disclosure agreement between VM
Labs, Inc. and the recipient. It may not be distributed or copied in any form whatso-
ever without the prior written permission of VM Labs.

This is a preliminary specification. VM Labs reserves the right to make
changes to any and all of the interfaces described in this document.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY i

Contents

1 Introduction 1

2 Functions 2
2.1 Comm Bus Functions . 2

2.1.1 CommSend . 2
2.1.2 CommSendInfo . 2
2.1.3 CommRecv . 2
2.1.4 CommRecvInfo . 3
2.1.5 CommRecvQuery . 3
2.1.6 CommRecvQueryInfo . 3
2.1.7 CommSendRecv . 3
2.1.8 comm send . 4
2.1.9 comm recv . 4
2.1.10 comm recv query . 4

2.2 Timer Functions . 4
2.2.1 GetTimer . 5

2.3 Video Functions . 5
2.3.1 VidSetup . 5

2.4 MPE Control Functions . 5
2.4.1 ReadMPERegister . 5
2.4.2 WriteMPERegister . 6
2.4.3 StopMPE . 6
2.4.4 WaitMPE . 6
2.4.5 StartMPE . 6
2.4.6 CopyToMPE . 7

2.5 DMA Functions . 7
2.5.1 mpedmaregister . 7
2.5.2 raw plotpixel . 8
2.5.3 synccache . 8
2.5.4 flushcache . 8

2.6 Fixed Point Math Functions . 9
2.6.1 DoubleToFix . 9
2.6.2 FixToDouble . 9
2.6.3 FixMul . 9
2.6.4 FixDiv . 9
2.6.5 FixRecip . 9
2.6.6 FixSinCos . 10
2.6.7 FixSqrt . 10
2.6.8 FixRSqrt . 10

2.7 SDRAM memory functions . 10
2.7.1 SDRAMAlloc . 10
2.7.2 SDRAMFree . 10
2.7.3 SDRAMInit . 11

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY ii

2.8 Miscellaneous Functions . 11
2.8.1 GetLocalVar . 11
2.8.2 SetLocalVar . 11
2.8.3 msprintf . 11
2.8.4 DebugWS . 12

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY iii

1. Introduction
The libmutil library collects together a number of useful utility functions for the
NUON architecture. All of these functions are callable from C, and follow the C
calling conventions, which are summarized here:

1. The C compiler automatically prefixes an underscore to all function and vari-
able names. So, for example, the function documented here by its C name
CommSend would be called CommSend from assembly language.

2. The first ten arguments are passed in registers r0 through r9. Other argu-
ments are passed on the C stack (pointed to by r31).

3. The C stack pointer is general purpose register r31. The hardware stack
pointer sp is reserved for interrupt purposes. Note that the C stack grows
downwards (predecremented), and must always be vector aligned. Some of
the libmutil functions use the hardware stack pointer sp, so it must be prop-
erly initialized before any of these functions are called. The standard C startup
code will do this automatically.

4. A function’s return value is placed in r0. 64 bit values are returned in r0 and
r1. Functions which return vector values return them in v0.

5. C functions may modify general purpose registers r0 through r11 (i.e. vector
registers v0, v1, and v2), and also register r29. The other general purpose
registers (r12 through r28, r30, and r31) are preserved.

6. I/O registers concerned with bus transfers (the main bus DMA registers, other
bus DMA registers, and comm bus registers) may be modified if appropriate
to the function (obviously a function like CommSend will modify the comm
bus!). All other I/O registers are preserved, including (in particular) the sp and
acshift registers.

7. acshift must not be modified – it must always be left set to 0, unless inter-
rupts are turned off.

8. All functions were assembled to use the cache, in its default configuration (32
byte lines). If you wish to use 16 byte cache lines, you will have to recompile
the library from its source. (The library should be compatibile as is with cache
lines larger than 32 bytes.)

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 1

2. Functions

2.1 Comm Bus Functions

The communication bus functions listed below are simple interfaces to the BIOS
comm bus functions, and are provided primarily for backwards compatibility. See the
BIOS documentation for further details of their operation.

2.1.1 CommSend

#include <nuon/mutil.h>
void CommSend(int target, long *packet)

Sends a communication bus packet to the destination whose communication bus
id is target. packet points to the four long words to be sent.

NOTE: beware of using CommSend followed by CommRecv to retrieve regis-
ter data from hardware if data may arrive unexpectedly from another source. It is
probably better to use CommSendRecv to query hardware registers via the comm
bus.

2.1.2 CommSendInfo

#include <nuon/mutil.h>
void CommSendInfo(int target, int info, long *packet)

Sends a communication bus packet to the destination whose communication bus
id is target. packet points to the four long words to be sent. info is an 8 bit quantity
which is to be placed in the comminfo register. If target is an MPE, then this data is
transmitted along with the packet and may be retrieved from the comminfo register
on the destination MPE. If target is a hardware unit, info is ignored.

2.1.3 CommRecv

#include <nuon/mutil.h>
int CommRecv(long *packet)

Receives a single communication bus packet; the four long words of the packet
will be placed in the memory pointed to by packet. CommRecv returns the comm
bus id of the processor which sent the packet.

If no packet is available when CommRecv is first called, then it will wait until a
packet is received. For a non-blocking read function (which returns immediately if no
data is available) use CommRecvQuery.

NOTE: there are a number of tricky synchronization issues involved in using the
comm bus, since many interrupt routines must use it to program the hardware or to
read joystick data. If you wish to use the comm bus to read hardware registers, you
should use the CommSendRecv function to ensure an atomic send and reply.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 2

2.1.4 CommRecvInfo

#include <nuon/mutil.h>
int CommRecvInfo(int *info, long *packet)

Receives a single communication bus packet; the four long words of the packet
will be placed in the memory pointed to by packet, and the 8 bit contents of the
comminfo register will be placed in the memory pointed to by info. If the sender
specified extra information (e.g. the packet was sent with the CommSendInfo func-
tion) then this will be the extra info; otherwise, it may contain garbage.

CommRecvInfo returns the comm bus id of the processor which sent the packet.
If no packet is available when CommRecvInfo is first called, then it will wait until

a packet is received. For a non-blocking read function (which returns immediately if
no data is available) use CommRecvQueryInfo.

2.1.5 CommRecvQuery

#include <nuon/mutil.h>
int CommRecvQuery(long *packet)

Receives a single communication bus packet; the four long words of the packet
will be placed in the memory pointed to by packet. CommRecvQuery returns the
comm bus id of the processor which sent the packet. If no packet is available at the
time of this call, CommRecvQuery returns immediately with a return value of -1,
and the memory pointed to by packet is left unchanged.

For a blocking read function (which waits until a packet is received) use Comm-
Recv.

2.1.6 CommRecvQueryInfo

#include <nuon/mutil.h>
int CommRecvQueryInfo(int *info, long *packet)

Receives a single communication bus packet; the four long words of the packet
will be placed in the memory pointed to by packet, and the 8 bits of extra information
will be placed in the memory pointed to by info (assuming, of course, that extra
information was sent along with the packet; otherwise it will contain garbage).

CommRecvQueryInfo returns the comm bus id of the processor which sent the
packet. If no packet is available at the time of this call, CommRecvQueryInfo returns
immediately with a return value of -1, and the memory pointed to by packet and info
is left unchanged.

For a blocking read function (which waits until a packet is received) use Comm-
RecvInfo.

2.1.7 CommSendRecv

#include <nuon/mutil.h>
int CommSendRecv(int target, long *packet)

Sends a communication bus packet to the destination whose communication bus
id is target, and then waits for a response. packet points to the four long words to be

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 3

sent; on return these four long words are overwritten with the response received. The
return value is the comm bus id of the sender of the response which was received.

CommSendRecv locks out interrupts while it is running, so it should be used
only to request data from hardware with low latency. Typically it would be used to
read registers from hardware units such as the miscellaneous I/O controller which
are accessible only via the comm bus.

2.1.8 comm send

#include <nuon/mutil.h>
void comm send(long p0, long p1, long p2, long p3, int target, int info)

Sends a communication bus packet to the destination whose communication bus
id is target. The packet consists of the four long words p0, p1, p2, and p3. An
additional 8 bits of information may be sent to targets which are MPEs; the low order
8 bits of info contains this extra information. This function is otherwise similar to
CommSendInfo and has the same limitations.

2.1.9 comm recv

#include <nuon/mutil.h>
long comm recv(void)

Receives a single communication bus packet, and returns the first word of that
packet. This is not terribly useful in C, but this function is very useful when called from
an assembly language program, since in fact registers r0 to r3 are set to the packet
contents, r4 is set to the comm bus id of the sender, and r5 is set to the received
extra comm bus information (if any). C programmers will find the CommRecvInfo
function to be more useful. comm recv will block until a comm bus packet has been
received, if necessary.

2.1.10 comm recv query

#include <nuon/mutil.h>
long comm recv query(void)

Receives a single communication bus packet, and returns the first word of that
packet. This is not terribly useful in C, but this function is very useful when called
from an assembly language program, since in fact registers r0 to r3 are set to the
packet contents, r4 is set to the comm bus id of the sender, and r5 to the received
extra comm bus information (if any).

C programmers will find the CommRecvQueryInfo function to be more useful
to them. The comm recv query function will return immediately if no comm bus
packet is available to be read, with r4 set to -1.

2.2 Timer Functions

The timer functions are simply interfaces to the BIOS timer routines, and are kept in
the utility library for backwards compatibility only. It is suggested that new applica-

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 4

tions call the BIOS routines directly.

2.2.1 GetTimer

#include <nuon/mutil.h>
long GetTimer(long *secs,long *usecs)

Gets the elapsed time since the BIOS was last initialized. If secs is nonzero,
then the number of seconds elapsed is placed in the long word pointed to by it. If
usecs is nonzero, then the number of microseconds since the last second is placed
in the long word pointed to by usecs. This time is probably accurate only to tens of
microseconds (don’t rely on the least significant digit).

GetTimer returns the number of milliseconds since the BIOS was last initialized,
which is probably sufficient resolution for most needs. Note that this will wrap around
after approximately 1 month.

GetTimer is identical to the BIOS TimeElapsed function.

2.3 Video Functions

The utility library video functions provide a simplified interface to the BIOS video
functions. See the BIOS manual for a description of the more comprehensive BIOS
video routines.

2.3.1 VidSetup

#include <nuon/mutil.h>
void VidSetup(void *baseaddr, long dmaflags, int width, int height, int filter)

Initializes the main video channel to display a frame buffer. baseaddr is the
address of the frame buffer; width and height are its width and height, respectively.
dmaflags are the DMA flags used to access the memory for writing; only the pixel
type and cluster bit fields of this are actually used. filter specifies what kind of vertical
filtering is to be used for the video output: 0 or 1 means no filter, 2 means a 2 tap
filter, and 4 means an (expensive) 4 tap filter.

The given frame buffer will be displayed full screen on the video; in other words,
it will be scaled up to 720 by 480 pixels (for NTSC; 576 pixels for PAL).

2.4 MPE Control Functions

2.4.1 ReadMPERegister

#include <nuon/mutil.h>
long ReadMPERegister(int mpe, void *regaddr)

Reads the value of a register in another MPE. mpe is the number of the MPE
from which to read. regaddr is the address of the register to read, expressed as a
“standard” (relative to MPE 0) address. Returns the value of the register.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 5

NOTE: reading registers r0 – r31 of a running MPE may cause that MPE to
crash.

2.4.2 WriteMPERegister

#include <nuon/mutil.h>
void WriteMPERegister(int mpe, void *regaddr, long value)

Writes a new value to an MPE’s register. mpe is the number of the MPE to which
the value is to be written. regaddr is the address of the register to write, expressed
as a “standard” (relative to MPE 0) address. value is the new value to write into the
register.

NOTE: writing registers r0 – r31 of a running MPE may cause that MPE to crash.

2.4.3 StopMPE

#include <nuon/mutil.h>
void StopMPE(int mpe)

Stops an MPE. mpe is the number of the MPE to stop. If the MPE is already
stopped, this function does nothing.

2.4.4 WaitMPE

#include <nuon/mutil.h>
void WaitMPE(int mpe)

Waits for an MPE to stop. mpe is the number of the MPE to wait for. If the MPE
is already stopped, this function returns immediately. Otherwise, it blocks until the
MPE stops (for example by executing a halt instruction).

2.4.5 StartMPE

#include <nuon/mutil.h>
void StartMPE(int mpe, void *codestart, long codesize, void *datastart, long data-
size)

Loads both code and data into an MPE, and then causes that MPE to start exe-
cuting at address 0x20300000. If the MPE is already running at the time StartMPE
is called, it will be stopped first and then restarted with the new code and data. mpe
is the number of the MPE affected. It must not be the ID of the currently running
MPE. codestart is the address of the code to be loaded into the MPE’s instruction
memory, starting at address 0x20300000. codesize is the size of the code in bytes;
this must be smaller than the size of the MPE’s instruction memory (typically 4096
bytes) and must be a multiple of 4. datastart is the address of the data to be loaded
into the MPE’s data memory, starting at address 0x20100000. datasize is the size
of the data in bytes; this must be smaller than the size of the MPE’s data memory
(typically 4096 bytes).

The MPE will start with its pcfetch register pointing to 0x20300000 (the base
of instruction RAM) and its stack pointer sp pointing to the address 0x20101000

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 6

(usually the end of data RAM). The rz register will be set to 0. The MPE should stop
itself by issuing a halt instruction.

Note: On the beta (Oz) hardware we recommend that codesize and datasize
be made multiples of 16, and that codestart and datastart should start on vector
boundaries; this will ensure that the other bus page boundary bug is avoided. If the
code and data are placed in unique sections (for example, foocode and foodata)
then the linker will ensure that these conditions are met. Placing all the code (or
data) for an invocation of StartMPE in its own segment also makes it easy to find
the codestart and codesize values, since for each segment foo the linker will create
symbols foo start and foo size. Note that the linker created symbols are absolute
symbols, and must therefore be referred to as though they were addresses.

For example: if an external assembly language file creates the segments mycode
and mydata for some function, this function can be loaded into MPE 2 and executed
via:

extern int mycode_start[], mycode_size[];
extern int mydata_start[], mydata_size[];

StartMPE(2, mycode_start, (long)mycode_size,
mydata_start, (long)mydata_size);

2.4.6 CopyToMPE

#include <nuon/mutil.h>
void CopyToMPE(int mpe, void *dest, void *src, long size)

Copies size bytes of data from src to dest, which is memory inside MPE number
mpe. dest must be an MPE-relative address; src is a system (absolute) address.

WARNING: this function may not work properly if the destination MPE is running.
void CopyFromMPE(int mpe, void *dest, void *src, long size)

Copies size bytes of data from src, which must be an MPE-relative address for
memory inside MPE mpe, to dest, which is an absolute address.

WARNING: this function may not work properly if the source MPE is running.

2.5 DMA Functions

2.5.1 mpedmaregister

#include <nuon/mutil.h>
long mpedmaregister(long dmaflags, void *regaddr, long value, int mpe)

Read or write another MPE’s register. This is a slightly different interface to
DMALinear, which is more convenient for some purposes. mpe is the number of

the destination MPE (which should not be the current MPE). dmaflags are the other
bus flags to be used by the DMA transfer; normally this should be 0x0001000 for a
write and 0x00012000 for a read. regaddr is the address of the register to read or
write, given as an address in MPE 0’s memory map. value is the 32 bit value to write
into the other MPE’s register, and is ignored for read operations.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 7

mpedmaregister returns either the value it just wrote, or the value read from
the other MPE’s register.

2.5.2 raw plotpixel

#include <nuon/dma.h>
void raw plotpixel(long dmaflags, void *baseaddr, long xinfo, long yinfo, long
color)

Plots a rectangle in a single color. This function is basically a direct interface to a
direct mode bilinear DMA. dmaflags are the flags for the main bus DMA. The read bit
must not be set, and the flags must be set up for a pixel mode write. raw plotpixel
will itself set the DIRECT bit, so it need not be set in dmaflags. baseaddr is the
base address of the area into which rendering is performed; it must be on a 512 byte
boundary in SDRAM. xinfo and yinfo set the x and y coordinates for the rectangle
being plotted, as well as the width and height. xinfo has the width in its upper 16
bits, and the x position in its lower 16 bits. Similarly, yinfo has the height in its upper
16 bits, and the y position in the lower 16 bits. Finally, color contains the value to
be drawn into the rectangle; this longword will be replicated throughout the area,
and will typically be a 32 bit YCrCb color value, 16 bit color plus 16 bit Z, or two 16
bit YCrCb color values (depending on the dmaflags). Note that for a 16 bit per pixel
output buffer, only the upper 16 bits of color will be used. For an 8 bit per pixel output
buffer, two pixels at a time (the two specified in the upper 16 bits of color) are plotted;
unless some sort of dithering is desired, make these two bytes the same in 8 bit per
pixel mode.

NOTE: As with all DMA operations, the total amount of data transferred during a
single raw plotpixel operation should be at most 64 long words total. This ensures
a predictable latency on the bus, without which some software (for example, MPEG
playback) may break, and some BIOS functions will not work.

2.5.3 synccache

#include <nuon/mutil.h>
void synccache(void)

Synchronizes memory with the MPE’s data cache. After this call is made all data
is guaranteed to have been stored out to memory. Since the data cache is not a write
through cache, it is usually necessary to make either a synccache or flushcache
call before doing any DMA operations which must read SDRAM or system bus RAM.
synccache differs from flushcache in that it does not invalidate the cache, and

thus it is the preferred means of ensuring that data is in SDRAM if normal caching
operation is to continue. However, note that if you wish to use the cache to access a
variable which another MPE has set, you must use flushcache to mark the cache
invalid.

2.5.4 flushcache

#include <nuon/mutil.h>

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 8

void flushcache(void)
Synchronizes memory with the MPE’s data cache, and invalidates the data cache.

After this call is made all data is guaranteed to have been stored out to memory, and
all data cache tags have been marked as invalid. This function is usually used be-
fore invoking a function which wishes to make use of local RAM for DMAs or similar
purposes. Since the cache is marked as invalid, use of the local RAM for scratch
purposes will be safe until a data access occurs which causes a data cache miss.

2.6 Fixed Point Math Functions

2.6.1 DoubleToFix

#include <nuon/mutil.h>
int DoubleToFix(double d, int shift)

Converts the floating point number d into a fixed point number with shift bits of
fractional precision. shift must be non-negative.

2.6.2 FixToDouble

#include <nuon/mutil.h>
double FixToDouble(int f, int shift)

Converts the fixed point number f, which has shift fractional bits, into a double
precision floating point number. shift must be non-negative.

2.6.3 FixMul

#include <nuon/mutil.h>
int FixMul(int a, int b, int shift)

Multiplies the fixed point numbers a and b together, and returns the result shifted
right by shift. 64 bits are used for the calculation. This “function” is actually imple-
mented as a macro, and is very fast.

2.6.4 FixDiv

#include <nuon/mutil.h>
int FixDiv(int a, int b, int shift)

Divides the fixed point number a by the fixed point number b. shift is the number
of fractional bits in b. The answer is a fixed point number with the same number of
fractional bits as a.

2.6.5 FixRecip

#include <nuon/mutil.h>
long long FixRecip(int a, int fracbits)

Finds the reciprocal of the fixed point number a. fracbits is the number of frac-
tional bits in a. FixRecip returns a 64 bit value: the upper 32 bits is the mantissa of

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 9

the reciprocal, and the lower 32 bits is the number of fractional bits in the reciprocal.
Note that the input parameter a must be a positive number.

2.6.6 FixSinCos

#include <nuon/mutil.h>
int FixSinCos(int angle, int *sinval, int *cosval)

Calculates both the sine and cosine of an angle. angle is a 16.16 fixed point num-
ber expressing the angle in rotations (so for example 45 degrees would be 0x2000).
The sine and cosine of angle are computed, and their values as 2.30 fixed point
numbers are placed in the locations pointed to by sinval and cosval respectively.
The sine is also returned as the result of FixSinCos.

2.6.7 FixSqrt

#include <nuon/mutil.h>
int FixSqrt(int x, int fracbits)

Calculates the fixed point square root of the fixed point number x. fracbits is
the number of fractional bits in x. The answer is returned with the same number of
fractional bits.

2.6.8 FixRSqrt

#include <nuon/mutil.h>
int FixRSqrt(int x, int xbits, int rbits)

Calculates the reciprocal of the fixed point square root of the fixed point number x.
xbits is the number of fractional bits in x. The answer is returned with rbits fractional
bits.

2.7 SDRAM memory functions

2.7.1 SDRAMAlloc

#include <nuon/sdram.h>
void * SDRAMAlloc(unsigned long size)

Allocates size bytes of memory in SDRAM. This function is a direct interface to
the BIOS MemAlloc function, and shares the same bugs; many older BIOS versions
do not mark memory used by the program’s COFF file, so SDRAMAlloc may return
this memory.

2.7.2 SDRAMFree

#include <nuon/sdram.h>
void SDRAMFree(void *ptr)

Frees memory in SDRAM which was previously allocated by SDRAMAlloc (or
MemAlloc).

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 10

2.7.3 SDRAMInit

#include <nuon/sdram.h>
void SDRAMInit(void *startaddr, unsigned long size)

This is an obsolete function which no longer has any effect. It is now simply a
do-nothing stub provided for compatibility with some old source code.

2.8 Miscellaneous Functions

2.8.1 GetLocalVar

#include <nuon/mutil.h>
int GetLocalVar(int &addr)

This is a macro for fetching the contents of a variable (or register) in an MPE’s
local memory. Since it is a macro, the name of the variable (rather than a pointer to
it) may be passed as the argument. Use of this macro is recommended, because
it works around a bug in the cache which can cause the MPE to hang if a cached
memory access is followed immediately by an uncached access (i.e. to local memory
or register). Note that variables in the intdata section are placed in local memory
by default, but variables in all other sections default to system ram, which is cached
memory.

2.8.2 SetLocalVar

#include <nuon/mutil.h>
int SetLocalVar(int &addr, int val)

This is a macro for setting the contents of a variable (or register) in an MPE’s
local memory. Since it is a macro, the name of the variable (rather than a pointer to
it) may be passed as the argument. Use of this macro is recommended, because
it works around a bug in the cache which can cause the MPE to hang if a cached
memory access is followed immediately by an uncached access (i.e. to local memory
or register). Note that variables in the intdata section are placed in local memory
by default, but variables in all other sections default to system ram, which is cached
memory.

2.8.3 msprintf

#include <nuon/msprintf.h>
int msprintf(char *buf, const char *fmt, ...)

A simple version of sprintf which may be used for formatting when the full power
of the standard C library is not needed. msprintf only supports integer output for-
mats. It will output at most SPRINTF MAX characters into the given buffer, and
returns the number of characters actually output.

Using msprintf instead of sprintf may reduce the size of your executable if you
use no other facilities from the standard I/O library.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 11

2.8.4 DebugWS

#include <nuon/mutil.h>
void DebugWS(long dmaflags, void *baseaddr, int xpos, int ypos, long color,
const char *string)

Write a message into a frame buffer. dmaflags and baseaddr are the DMA flags
used for writing into the buffer and the base address of the frame buffer, respectively.
xpos and ypos are the x and y coordinates for the upper left hand corner of the
string. color is the color used to draw the string; the interpretation of this depends
on the pixel type in dmaflags. string is the (zero terminated) ASCII string to write.

Note that the font used for DebugWS is quite ugly, and does not contain all
punctuation characters.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 12

Index

CommSend, 1
DMALinear, 7
GetLocalVar, 11
MemAlloc, 10
SetLocalVar, 11
TimeElapsed, 5
comm recv, 4
comm recv query, 4
comm send, 4
flushcache, 8, 9
mpedmaregister, 7, 8
raw plotpixel, 8
synccache, 8

CommRecv, 2, 3
CommRecvInfo, 3, 4
CommRecvQuery, 2, 3
CommRecvQueryInfo, 3, 4
CommSend, 1, 2
CommSendInfo, 2–4
CommSendRecv, 2–4
communication bus, 2, 3
CopyFromMPE, 7
CopyToMPE, 7

DebugWS, 12
DoubleToFix, 9

FixDiv, 9
FixMul, 9
FixRecip, 9
FixRSqrt, 10
FixSinCos, 10
FixSqrt, 10
FixToDouble, 9

GetTimer, 5

msprintf, 11

ReadMPERegister, 5

SDRAMAlloc, 10
SDRAMFree, 10
SDRAMInit, 11
sprintf, 11

StartMPE, 6, 7
StopMPE, 6

video, 5
VidSetup, 5

WaitMPE, 6
WriteMPERegister, 6

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 13

