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1. INTRODUCTION 
XLisp is a lisp implementation written and maintained by David Betz. It is based largely on the standard 
lisp dialect, Scheme, which it extends with a Smalltalk-like Object System. Generally speaking, 
Scheme programs will run on XLisp—the exceptions involving use of special features like arbitrary-size 
integers (known in lisp parlance as "bignums"). Accordingly, any of the several good textbooks on 
Scheme [see the References] will prove useful to the XLisp programmer. Scheme is not an "obscure" 
language—it is the language of choice in Computer Science departments at many universities, 
including MIT where it was developed in 1975.  
This tutorial is intended as a briefest-possible introduction for the C programmer who is not assumed to 
have any background in lisp programming. 

1.1 XLisp Data Types 

1.1.1 Numeric data types 
XLisp's numeric data types are a subset of C's: 

integer corresponds to C’s long int 
number corresponds to C’s double 

 Table 1 

(Full Scheme also has bignums, rationals, and complex numbers.) 

1.1.2 Non-numeric data types 
XLisp also has the following non-numeric data types: 

string identical to C's, e.g. "Hello, world!" 
character represents the ASCII set.  

The notation is #\a for what C would write as 'a'.  
Special cases are #\space and #\newline. 

vector An array of objects of inhomogeneous type, for example #(27 "George" #\z).  
Roughly equivalent in C to an array of void pointers. 

Boolean #t or #f,  
similar to C's 1 and 0. False (#f) is also represented, for traditional reasons, by the 
empty list () and equivalently by the symbol NIL. In C, anything non-zero is true; the 
same thing happens in XLisp, where anything different from #f (or the equivalents, () 
or NIL) is treated as #t. 

symbol In C, symbols are used as identifiers, but symbols are not a data type. In XLisp, where 
symbols are also used as identifiers, the value of a symbol can be another symbol. 

procedure XLisp allows run-time creation of procedures, which are first class objects (i.e., can be 
passed as arguments, returned as values, or created anonymously in expressions). 

Class, Object XLisp provides a Smalltalk-like Object System. 

Table 2 

These are the “atomic” data types of XLisp. XLisp uses these to build up general Symbolic 
Expressions, called S-Expressions. The prototypical S-Expression is the list, written as a space-
separated list of elements enclosed in parentheses: 
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(a1 a2 ... aN)

The list elements can be arbitrary data objects including other lists. 
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2. THE XLISP EVALUATOR 
XLisp is an interpreter which normally runs in a READ-EVAL-PRINT loop: that is, it repeatedly READs 
an S-Expression typed at the keyboard (or input from a file), EVALuates the S-Expression, and 
PRINTs the value on the console. 
Constants evaluate to themselves—for example: 

[1] 27
27
[2] "George"
"George"
[3] _

(Notice that XLisp numbers its inputs, allowing them and their associated responses to be 
subsequently recalled, as described below.) 
Symbols that have been assigned a value will return that value when evaluated:  

[3] nil
()
[4] +
#<Subr +>
[5] _

The symbol NIL is "bound" to the empty list, (), which is also the value of the Boolean #f. The symbol 
+ is bound to (has as its value) a pre-defined subroutine which adds numbers. 
Lists are similar to function calls, in which the first list element names the function and the remaining 
elements are arguments. For example,  

[5] (+ 3 4 10)
17
[6] (string-append "Fred" "+" "Ginger")
"Fred+Ginger"
[7] _

In each case, the first list element is a procedure; the Evaluator proceeds to evaluate each of the 
remaining list elements and use their values as arguments to that procedure. This is a recursive 
definition, because list elements may themselves be lists that need to be evaluated: 

[7] (+ (* 3 5) 100)
115
[8] _

Notice here that the second list element—(* 3 5)—is a list which evaluates to the product of 3 and 5, 
i.e. 15. The third list element, 100, is a constant that evaluates to itself. The first list element, whose 
value is the addition procedure, adds the values of the other list elements to give 15 + 100 = 115. 
As a final example, we mention the functions alluded to above for recalling expressions previously 
entered, and the values returned. %e takes a single integer argument, and returns the S-expression 
typed as input; the value returned can be recalled using %v in the same way: 
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[8] (%e 5)
(+ 3 4 10)
[9] (%v 6)
"Fred+Ginger"
[10] _

2.1 Special Forms 
List-evaluation typically involves evaluating all list elements, followed by applying the value of the first 
element—which must be a procedure—to the values of the remaining elements, which are arguments 
to that procedure. There are certain situations where the Evaluator must deviate from this practice, and 
not automatically evaluate each list element before making the procedure call. These lists are known 
as special forms, and are distinguished by special pre-defined symbols which appear as the first list 
element. For example, the list (define x 100) is recognized as a special form because the Evaluator 
knows about the reserved symbol define. Another such reserved symbol is if—both are described 
below. (Informally, one sometimes speaks of the reserved symbol itself as the special form.) 

2.1.1 DEFINE 
Define is used to introduce symbols into symbol-tables, and optionally to assign values to those 
symbols. For example:  

[8] (define x 100)
x
[9] x
100
[10] (+ x 1)
101
[11] _

Statement [8] creates a symbol-table entry for x, and binds it to the initial value 100. Typing x at XLisp 
in [9] shows that it was paying attention. Statement [10] shows that x can be used in an expression, 
and its value will be looked up and used. 
Define cannot be an ordinary procedure, for then its arguments would have to be evaluated and we 
know that its first argument, x, is not guaranteed to have a value. In fact, it may be unknown to the 
system (that is, not found in the symbol-table, which is different from having an entry but simply not 
having been assigned a value). In fact, the whole purpose of define is to introduce a new symbol and 
assign it a value. So the Evaluator recognizes define and handles the situation specially. 

2.1.2 IF 
If has a similar problem to deal with: its general form is 

(if test consequent alternative)

and it may be important not to evaluate both the consequent and the alternative. This situation arises in 
C: 

c = getc(in);
if (c != EOF)

putc(c, out); // do this--
else

fclose(out); // or this, but not both!

In lisp, the corresponding code looks like: 
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(set! c (read-char in)) ; set!, like define, is a special form
(if (not (eof-object? c)) ; if we're not at end-of-file

(write-char c out) ; then write the char to output
(close-port out)) ; else, close the output port

With ordinary procedures, the Evaluator evaluates all the list elements before applying their values as 
arguments. Therefore, if is treated as a special form: the first argument, test, is evaluated, and 
depending on whether it returns true or false either the second or the third argument will be evaluated, 
but never both. The value of the one chosen is the value of the if expression: 

[11] (if (zero? x) "Can't take reciprocal of Zero!" (/ 1 x))
0.01
[12] _

Here the test part is an ordinary procedure call: the function zero? returns #t only if its argument is in 
fact 0. If that is the case, the if will evaluate the second argument, which is a string constant, and 
return that—it won't attempt to evaluate the third argument which would involve the forbidden deed. In 
our case, x is 100, so the test returns ()—i.e., NIL which is the same as #f—and the reciprocal is 
computed by using the division procedure / to divide 1 by x. 
Generally, we can treat evaluation of a list by a single rule: the first element specifies some type of 
operator and the remaining elements are its operands. Special forms, in which the first element is one 
of a few predefined keywords, are handled specially—some of the arguments being evaluated and 
others not, as dictated by the keyword. (The user can augment this keyword set using the macro 
facility, but this is a separate topic.) Other than this, all list elements are evaluated, and the first had 
better turn out to be a procedure that can accept the values of the remaining elements as its 
arguments. 

2.2 Nested Environments and LET 
An Environment is a symbol-table. When we type S-Expressions at the XLisp Evaluator, symbols 
occurring in these expressions are looked up in the global environment. For example, when we type 

[1] (+ 3 5)
8
[2] _

the symbol + is looked up; its value, in the global symbol-table, is a procedure that adds numbers. If a 
symbol occurring in the expression cannot be found, an error will occur. We have seen above how 
define is used to introduce a new symbol into the current environment and assign it an initial value. 
Notice the use of the modifier current in referring to the environment: environments can be nested, and 
a symbol that occurs in a nested environment can "shadow" the value of that symbol defined in an 
outer environment (including the global environment). This is the same block structuring that is seen in 
C: 

int x = 85;
{

int x = -2;
printf("inner x = %d\n", x); // prints "x = -2"

}
printf("outer x = %d\n", x); // prints "x = 85"

Nested environments are created explicitly with the special form let: 
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[2] (define x 85)
x
[3] (let ()

(define x -2)
(print x))

-2
#t
[4] x
85
[5] _

Here at the "top level," we introduced the symbol x into the global environment and gave it the value 
85. In statement [3], we created a let form: let's first argument is a list of symbols being created in a 
new symbol-table (environment) that is linked to the global environment. Here the list is empty: no new 
symbols are being introduced. That is done by the define, which is invoked within the scope of the 
let. This define introduces the symbol x and assigns it the value -2. When the print function is 
invoked in the next line, the Evaluator looks up x in the innermost enclosing environment, which is the 
one created by the let: there it finds the x that was deposited by the define, and discovers that its 
value is -2. The effect of invoking the print procedure is to print the value of x (here -2). (The #t on 
the line below the -2 is the value returned by the let expression: the READ-EVAL-PRINT loop prints 
the value of the let expression it has just EVALuated.) 
Statement [4] shows that the global value of x has not been affected. The nested environment went 
"out of scope" when we crossed the second parenthesis after the print—the one that balanced the 
open parenthesis of the let itself. 
The normal syntax of let is 

(let ((sym1 val1) (sym2 val2) ...)
exp1 exp2 ...)

where sym1, sym2, ... are symbols that are being introduced into the nested environment, and 
val1, val2, ... are arbitrary expressions whose computed values are assigned to the associated 
symbols. The body of the let consists of a series of S-Expressions exp1, exp2, ... which are 
evaluated sequentially inside the nested environment. Thus, the symbols sym1, ... can occur in these 
expressions and will have the values that have been locally assigned. The value returned by the let is 
the value of the final expression found in its body. 
The example shown above in [3] could be reworked equivalently as follows:  

[5] (let ((x -2))
(print x))

-2
#t
[6] x
85
[7] _

Again we see that the global value of x is unchanged. 

It is important to understand that that the expressions val1, ... in the general let form above are 
evaluated in the innermost surrounding environment that encloses the let. For example: 

[7] (let ((x -2)
(y (+ 1 x)))

(+ x y))
84
[8] _

The value of the let is the value of the single expression in its body: (+ x y). Here, the evaluator 
searches for the value of the symbol + and finds it in the global environment with its usual value (the 
addition procedure). x is looked up in the same manner, but here a value is found in the innermost 
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enclosing environment: -2. y is found in this same environment and has the value 86. That arises 
because the expression (+ 1 x), whose value is assigned to y, is evaluated in the environment that 
encloses the let, and in this environment x has the value 85. Consider instead the expression: 

[8] (let ((x -2))
(let ((y (+ x 1)))

(+ x y)))
-3
[9] _

Now we have a pair of nested lets: when the symbol y is introduced in the second of these, the x 
comes from the previous let which shadows the x in the global environment. In evaluating (+ x y) , 
the Evaluator searches back along the chain of enclosing environments until each of the symbols is 
found.  y is found in the innermost enclosing environment, and x is located in the environment that 
immediately surrounds that. 
The special form let* allows a simple abbreviation for nested lets: 

(let ((s1 v1))
(let ((s2 v2))

(let ((s3 v3))
exp1
exp2)))

can be written more succinctly with let*: 
(let* ((s1 v1)

(s2 v2)
(s3 v3))

exp1
exp2)

Thus the example of [8] could be rewritten as: 
[9] (let* ((x -2)

(y (+ x 1)))
(+ x y))

-3
[10] _

2.3 SET! 
C programmers normally code their algorithms as a series of assignment statements: an expression is 
computed and the value is assigned to a variable, as in 

x = a + b;

The XLisp-equivalent expression is  
(set! x (+ a b))

SET!, like DEFINE, is a special form that treats the first argument — here x — as a target symbol to 
receive the value computed from the second argument. Normally, DEFINE is used to introduce new 
symbols into the current environment, and SET! is used to alter (reassign) the values bound to these 
symbols.  
In formal Scheme, it is an error to use SET! on a new symbol, or to re-DEFINE an existing one; most 
conversational Schemes, including XLisp, are more tolerant, and will allow DEFINE and SET! to be 
used interchangebly at the top level. But in nested environments, the behavior is very different: SET! 
will search for the target symbol starting in the environment active at its point of invocation, looking 
backward through the nested hierarchy, and modify the first instance of that symbol it finds. If the 
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symbol cannot be found at all, it will be introduced and assigned at the top level — that is, in the global 
environment. DEFINE, on the other hand, only acts within its local environment. For example: 

[1] (define x 85)
x
[2] (define y -10)
y
[3] (let ((y 100))

(set! x 7)
(set! y 5)
(format #t "x = ~A, y = ~A~%" x y))

x = 7, y = 5
()
[4] x
7
[5] y
-10
[6] _

In statements [1] and [2], we introduce global variables x and y, assigning them the values 85 and -10, 
respectively. In [3], we create a nested environment in which a local symbol y occurs with a value of 
100. The two SET! statements reassign x and y to 7 and 5, respectively. The FORMAT statement — 
described later — prints the values of x and y and shows that they have changed. But notice from [4] 
and [5] that the global value of x has been altered, while the top-level y remains unmolested. This 
illustrates the behavior of SET! outlined above. Had DEFINE been used in place of SET!, the printed 
output would have been the same, but the global values of both x and y would have been unaffected. 

2.4 Quoting 
Symbols are a data type, but how could you assign a symbolic value to a variable? For example, I want 
to create a variable x and initialize it to have the symbolic value done. The following attempt fails: 

[1] (define x done)
error: unbound variable - done

and the interpreter enters a Debug loop from which we can escape by entering the function call 
(reset). 
The problem is that the define wants to assign to x the value of done, and so looks up done in its 
symbol table and doesn't find it. We're not getting what we intended here: we don't want the value 
associated with the symbol done but the symbol done itself. There is a special form, quote, for dealing 
with just this situation: 

[1] (define x (quote done))
x
[2] x
done
[3] _

When the Evaluator sees a list whose first element is the keyword quote, it takes the second list 
element as written and passes it along as the value of the quote. Here's a more interesting example: 

[3] (define y (quote (+ 1 2)))
y
[4] y
(+ 1 2)
[5] _

Now the variable y has been assigned, not just a symbol, but a symbolic expression in the form of a 
list. Without the quote, y would have been assigned the value of this list, namely 3. 
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Quoting is so common that the function read , which parses input before handing it over to EVAL, 
recognizes a convenient shorthand: a single quote ' placed in front of an expression quotes the 
expression. That is, 'done is treated the same as (quote done), and the statement [3] above could 
equally have been entered: 

[3] (define y '(+ 1 2))

with exactly the same effect. 
Quoting in XLisp is similar to quoting in English, as illustrated by the neat example I read in a book long 
ago: 

Chicago is a windy city; "Chicago" is a seven-letter word. 
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3. LAMBDA 
Procedures are created using the keyword lambda—for example: 

[1] (define square (lambda (x) (* x x)))
square
[2] _

Here the symbol square is introduced into the global environment with a value resulting from the 
expression (lambda (x) (* x x)). The keyword lambda tells the Evaluator that a procedure is being 
created. Immediately following the lambda is the formal argument list: in this case, there is a single 
argument represented by the symbol x. Following the argument list is a sequence of one or more 
expressions to be evaluated when the function is invoked: the value of the last of these expressions will 
be the value the procedure returns. 
The procedure square can now be invoked the same as any built-in XLisp function: 

[2] (square 10)
100
[3] _

Here's how the Evaluator arrives at this result. It notices that square is defined as a procedure, with a 
single formal argument x. It creates a nested environment in which the formal argument, x, is bound to 
(i.e., assigned) the value of the actual argument 10. Then the body of the procedure is evaluated in this 
environment. Here the body consists of the single expression (* x x). x might have a global value, 
but it is the local value that is used; the value 100 results from the multiplication, and is returned as the 
value of (square 10). 
Procedures capture the local environment in which they are created; this allows them to hold local 
state. Here is a procedure of no arguments that simply returns the number of times it's been called: 

[3] (define how-many-times
(let ((count 0))

(lambda ()
(set! count (+ count 1))
count)))

how-many-times
[4] (how-many-times)
1
[5] (how-many-times)
2
[6] _

The symbol how-many-times is assigned the value of the lambda expression, which is a function of no 
arguments that increments the local variable count and then returns the incremented value.  count is 
defined in a local environment seen only by the created procedure; no other occurrence of count can 
possibly refer to the same datum: 

[6] (define count 100)
count
[7] (how-many-times)
3
[8] count
100
[9] _

The mechanism here is similar to the use of static locals in a C function, to retain state across 
invocations. 
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Procedures are first-class data objects that can be passed as arguments and returned as values. As a 
simple illustration, we define a procedure one-upper that takes a numerical function like square and 
returns a "one-upping" function that always returns a value 1 larger. 

[9] (define one-upper (lambda (f)
(lambda (x)

(+ (f x) 1))))
one-upper
[10] _

Here one-upper is defined as a procedure taking a single argument f which represents a numerical 
function. The value returned by one-upper is the value of the lambda expression (lambda (x) ...), 
that is, a function of a single argument x that computes a value. The value it computes is given by the 
expression (+ (f x) 1), which is the sum of 1 and the result of applying the given function f to x. We 
can use one-upper to transform our square procedure into a procedure that computes 1 more than 
the square of its argument: 

[10] (define sq++ (one-upper square))
sq++
[11] (sq++ 10)
101
[12] _

If the newly-created one-upping procedure is going to be used only once, there is no need to assign it 
to a variable with define: it can be created anonymously and used in place: 

[12] ((one-upper sqrt) 64)
9
[13] _

Here we see an illustration of the recursive nature of list evaluation: the first list element is itself a 
procedure call that evaluates to a procedure (namely, the one-upper of the square root procedure); that 
procedure is then applied to the value of the second element, which is the constant 64. 
A more complicated example of transforming one procedure into another is the following, which I've 
had occasion to use in Numerical Analysis work. We define a procedure make-counting-version that 
takes, as its argument, any function like square or sqrt that computes numerical values, and returns a 
new version of that function which keeps track of the number of times it's been called: 

[13] (define make-counting-version
(lambda (function)

(let ((count 0))
(lambda (x)

(cond ((number? x) (set! count (+ count 1))
(function x))

((eq? x 'count) count)
((eq? x 'reset!) (set! count 0))
(else 'huh?))))))

make-counting-version
[14] _

The special form cond is a powerful conditional that presents a number of "phrases", each as a list. In 
each phrase, the first element is evaluated—if the result is false, then we proceed immediately to the 
next phrase. When a phrase is encountered whose first element is true (the final else always counts 
as true), then the remaining expressions in that phrase are evaluated sequentially and the value of the 
final expression is immediately returned as the value of the cond.  
Thus, make-counting-version is a procedure of a single argument, function, which is presumed to 
take a numerical argument and return a numerical value. As in the example of how-many-times 
above, we create a local counter for use of the procedure we return—that procedure being created by 
the (lambda (x) ...) appearing inside the nested environment of (let ((count 0)) ...). 
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The function we return takes its argument x and first asks if x is a number. If it is, then we increment 
the counter and return the value that function would have returned. But we allow the caller to supply 
non-numerical values: the symbolic argument 'count prompts us simply to return the counter value, 
and the symbolic argument 'reset! resets the counter. Any other type of argument is unexpected and 
provokes the response 'huh?. 

[14] (define csq (make-counting-version square))
csq
[15] (csq 4)
16
[16] (csq -9)
81
[17] (csq 'count)
2
[18] (csq 'count)
2
[19] (csq 5)
25
[20] (csq 'count)
3
[21] (csq 'reset)
huh?
[22] (csq 'reset!)
0
[23] (csq 'count)
0
[24] _

3.1 Creation and manipulation of Lists 
The simplest way to create a list is with the procedure list, that takes any number of arguments and 
returns a list of those arguments: 

[1] (define example-list (list 'a 100 "George"))
example-list
[2] example-list
(a 100 "George")
[3] _

XLisp has built-in functions first, second, third, and fourth for extracting the early elements of any 
list: 

[3] (second example-list)
100
[4] _

For historical reasons, the name car is often used in place of first: 
[4] (car example-list)
a
[5] _

The nth element of a list (0-based indexing) can be extracted using the function list-ref: 
[5] (list-ref example-list 2)
"George"
[6] _

One can extract the remainder of a list after removing the first element by using the function rest: 
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[7] (rest example-list)
(100 "George")
[8] (rest (rest example-list))
("George")
[9] _

For historical reasons, rest is commonly known by the synonym cdr—pronounced "could'-er"). Many 
recursive procedures involve "CDRing" down a list, as for example the following which counts the 
number of elements in a list: 

[9] (define length-of-list
(lambda (L)

(print L)
(if (null? L)

0
(+ 1 (length-of-list (rest L))))))

length-of-list
[10] _

This just says that if the given list, L, is empty (that is, a null list), then the length is 0; else, the length 
is 1 more than the length of the rest of the list. We've inserted the (print L) statement just so we can 
see how this works when we call it: 

[10] (length-of-list example-list)
(a 100 "George")
(100 "George")
("George")
()
3
[11] _

The function length-of-list calls itself recursively, each time on the whittled-down sublist that 
remains after removing the first element. The printed output shows this. Finally the list is reduced to 
NIL—that is, the empty list ()—and the procedure simply returns 0. This returned value is handed 
back up the ladder to previous invocations that add 1 to it, and the final result—3—is printed by the 
READ-EVAL-PRINT loop in the usual way. 
The built-in function length returns the length of any list, without printing out its argument as above.  

3.1.1 Building up lists with CONS 
One can use the procedure cons to add elements onto the front of a list:  

[11] (cons 'foobar example-list)
(foobar a 100 "George")
[12] _

Using car, cdr, and cons together, we can write our own version of the standard function reverse that 
takes a list and makes a new list with the same elements in reverse order. It's convenient to start with a 
"helper" function that takes two lists as its arguments, and peels elements off the front of the first list 
while pasting them onto the front of the second: 
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[12] (define helper
(lambda (old-list new-list)

(if (null? old-list)
new-list
(let ((element (car old-list)))

(helper (cdr old-list) (cons element new-list))))))
helper
[13] _

Notice the recursive action of helper: if old-list is not empty, it extracts its first element using car 
(or first), and then calls itself with old-list replaced by the cdr (rest) of its previous value, and 
new-list replaced by its previous value with element CONSed onto the front of it. All we have to do 
now is start up the target list initially empty, i.e., with old-list initialized to NIL: 

[13] (define list-reversed
(lambda (L)

(helper L nil)))
list-reversed
[14] (list-reversed example-list)
("George" 100 a)
[15] _

3.1.2 Concatenating lists 
The built-in procedure append takes any number of argument lists and returns their "concatenation": 

[15] (append '(a b c) '(1 2 3 4 5) '("Harry" "Fred"))
(a b c 1 2 3 4 5 "Harry" "Fred")
[16] _

None of the functions described so far alters the argument lists: new lists are always created and 
returned. There are so-called "destructive" list functions that do modify their arguments; their names 
end in the exclamation mark ! as a warning. For example, the destructive version of append is 
append!—it actually splices the lists in place. 

3.2 Procedure definition in XLisp 
The special form define allows us to replace a procedure definition like  

[1] (define square (lambda (x) (* x x)))
square
[2] _

with the following equivalent construction: 
[2] (define (square x) (* x x))
square
[3] _

define, in looking at its first argument, sees not a symbol but rather the expression (square x), 
which has the appearance of a procedure call. Being intelligent, define infers that a procedure named 
square is being defined, and supplies the lambda implicitly. 
This process is analogous to the defining mechanism used in C, where a variable is declared by using 
it in an expression that evaluates to a known type. For example, 

int (*Func)(double, int);

declares Func to be a pointer to a function taking a double and an int as arguments and returning an 
int as value. Likewise, 
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[3] (define ((one-upper f) x)
(+ (f x) 1))

one-upper
[4] _

declares one-upper to be a function that takes an argument f and returns a function that takes an 
argument x. Nothing here constrains the data type of f or x, but the procedure body—(+ (f x) 1)—
won't work if f isn't a function and x an argument it can act upon. 
On examining the definition in [3], you may come to find it more transparent than the equivalent 
definition given earlier in terms of lambda expressions: 

(define one-upper (lambda (f)
(lambda (x)

(+ (f x) 1))))

The lambda form is actually more flexible, because it allows us to insert local environments in front of 
it, as in the earlier example 
(define how-many-times

(let ((count 0))
(lambda ()

(set! count (+ count 1))
count)))

Trying to do the same thing without explicitly using lambda is tricky; for example 
(define (how-many-times)

(let ((count 0))
(set! count (+ count 1))
count))

recreates the local variable count each time the procedure is entered; the return value is always 1. The 
better attempt: 

(let ((count 0))
(define (how-many-times)

(set! count (+ count 1))
count))

fails because the procedure how-many-times is embedded in the same nested environment as count, 
and disappears as soon as we exit the let. But the following works: 

[4] (define how-many-times)
how-many-times
[5] (let ((count 0))

(define (foo)
(set! count (+ count 1))
count)

(set! how-many-times foo))
#<Procedure FOO>
[6] _

Statement [4] introduces the symbol how-many-times into the global environment, without bothering to 
give it a value. (XLisp gives it the default value NIL; other lisps mark it explicitly as unassigned or 
"unbound". I used to enjoy one such interpreter that would respond to my using the undefined symbol 
FRANKENSTEIN with the error message "FRANKENSTEIN UNBOUND".) 
Statement [5] proceeds as above to define a local function—now called foo—that lives in a private 
environment with its local data count.  foo, like count, will go out of scope as soon as we exit the 
let—hence, before exiting, we assign the value stored in foo to the globally visible how-many-times. 
The value assigned using the set! is what XLisp prints as the value of the let. 
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Both styles of procedure definition—with and without the explicit lambda —have extensions to allow 
optional arguments and a variable number of arguments. XLisp borrows additional syntactical 
extensions from Common Lisp that make these features especially convenient, and these are 
described and illustrated now. 

3.2.1 Optional, rest, and keyword arguments 
Optional arguments can be specified using &optional. For example, 

[6] (define (foo a b &optional (c 17))
(list a b c))

foo
[7] _

defines foo as a function taking two required arguments—a and b—and an optional argument c that 
has a default value of 17. Since foo simply returns its arguments in a list, it is easy to see by 
experiment what those arguments are: 

[7] (foo 10 20)
(10 20 17)
[8] (foo 10 11 12)
(10 11 12)
[9] _

Any number of arguments can follow &optional; here's an example using lambda explicitly: 
[9] (define bar (lambda (x &optional (y 10) z (w "yes"))

(list x y z w)))
bar
[10] _

Here bar has a required argument, x, and three optional arguments, y, z, and w.   y and w have 
specified defaults of 10 and "yes" respectively; no default has been stipulated for z which accordingly 
defaults to ()—i.e., NIL. Thus: 

[10] (bar 1)
(1 10 () "yes")
[11] (bar 1 2 3)
(1 2 3 "yes")
[12] _

Procedures with a variable number of arguments can be defined using &rest, as in the example: 
[12] (define (foobar x y &rest z)

(list x y z))
foobar
[13] _

The meaning here is that foobar may be invoked with any number of arguments greater than or equal 
to 2, since the first two arguments—x and y—are required. If there are more than two arguments when 
foobar is called, all the "extra" ones will be collected into a list and that list will be bound to the &rest 
argument, z. Thus: 

[13] (foobar 1 2)
(1 2 ())
[14] (foobar 1 2 3)
(1 2 (3))
[15] (foobar 1 2 3 4 5)
(1 2 (3 4 5))
[16] _

The built-in procedure list could be succinctly redefined using &rest as (lambda (&rest L) L). 
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&optional arguments can coexist with the single &rest argument, as long as the latter comes at the 
end of the argument list. 
Another very useful extension allows non-positional keyword arguments, which are prefaced in the 
argument list by &key. Consider the following example: 

[16] (define (page &key (color 'white) (width 8.5) (height 11))
(list color width height))

page
[17] _

Defaults are specified as with &optional; likewise here a value of NIL is used if no default is given. 
But here we can override the defaults in an order-independent way, by using the &key variable name 
preceded by a colon as in these examples: 

[17] (page)
(white 8.5 11)
[18] (page :height 17)
(white 8.5 17)
[19] (page :width 4 :color 'grey)
(grey 4 11)
[20] _

This arrangement is extremely convenient for functions that take many arguments having natural 
default values. Having to remember the order of numerous arguments is a difficulty we hereby avoid; 
and only the arguments that vary from their defaults need be specified at all. The use of the keyword 
makes the invocation self-documenting. 
&key can be used in conjunction with &optional provided &key comes last. &key cannot be used with 
&rest, each needing to come last if used at all. 
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4. XLISP FILE I/O 
XLisp's facilities for reading and writing files are based on C's: one can work with text or binary files; in 
the latter case, byte order can be controlled. 
We'll focus on output in what follows, and begin with standard printing functions display, write, and 
format. 
Display and write each take a single required argument—the value to be printed—and an optional 
argument which is the output port to which the printing is done. This output port, if omitted, defaults to 
*STANDARD-OUTPUT*: 

[1] (display "Hello")
Hello
#t
[2] (write "Hello")
"Hello"
#t
[3] _

In each case, the first line of output results from the action of the procedure called; the second line (#t) 
is the value returned by the procedure and printed by the READ-EVAL-PRINT loop in the standard 
way.  
Notice that write outputs the string with the double-quotes. Generally, display is the right choice for 
output that people will read;  write attempts to structure its output so that the object printed could be 
reconstructed if read back in using  read. 
XLisp's format is a much-simplified version of the Common Lisp procedure that serves the purpose of 
C's printf. The first, and required, argument is either #t, #f, or an output port. #t is used to have the 
same effect as specifying *STANDARD-OUTPUT*. #f means that printing will be done to a (newly-
allocated) string, which is returned as the value of the format call. 
The second, also required, argument is the format string itself, analogous to printf's format string. 
The special formatting character, serving the same purpose as printf's %, is the tilde ~. XLisp's 
format recognizes these constructs: 

Argument Definition 
~A print the next argument as with DISPLAY 
~S print the next argument as with WRITE 
~X print the integer argument in hex, using 8 hex digits 
~% print a new line 
~& print a new line if not at the beginning of a line 
~~ print a ~ (tilde) 

 Table 3 

For example: 
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[3] (define greeting "Howdy!")
greeting
[4] (format #t "using DISPLAY, it's ~A~%using WRITE, it's ~S"

greeting greeting)
using DISPLAY, it's Howdy!
using WRITE, it's "Howdy!"
()
[5] _

The final NIL is the value returned by format. 
File I/O is adequately described in that section of the XLisp Manual: the same flexibility offered by C is 
in evidence. For example: 

[5] (define p (open-output-file "foo.txt"))
p
[6] p
#<File-stream #x1d212e0:476a10>
[7] (port? p)
#t
[8] _

In [5] we open a text output file named "foo.txt". [6] shows that the value returned by the call is a File-
stream—something like a file pointer in C. [7] shows that p is of type port. The following sequence can 
now be used to write to the newly-created file: 

[8] (display "Here's a sentence!" p)
#t
[9] (newline p)
#t
[10] (format p "-1 in hex is ~X~%" -1)
()
[11] (close-port p)
()
[12] _

If we now examine the file "foo.txt", we discover that it contains these lines: 
Here's a sentence!
-1 in hex is ffffffff

The same effect could have been achieved using the procedure (call-with-output-file  str  
proc)—here str is a string that names the output file to create, and proc is a procedure taking one 
argument (which will be a port): 

[12] (call-with-output-file
"foo.txt"
(lambda (p)

(display "Here's a sentence!" p)
(newline p)
(format p "-1 in hex is ~X~%" -1)))

#t
[13] _

Notice that the proc argument is created explicitly in place using lambda; the single argument p is just 
the port which results from opening the file. What's nice here is that the port is closed automatically 
when call-with-output-file completes. 
There doesn't happen to be a call-with-append-file, which might be convenient; here's how one 
could be written to work in the manner shown above: 
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(define (call-with-append-file str proc)
(let ((p (open-append-file str)))

(if (not (port? p))
'error-opening-file!
(let ((result (proc p)))

(close-port p)
result))))

There is another kind of output stream that is sometimes useful: instead of being associated with an 
output file, it references an in-memory extensible string. See the XLisp Manual under "String Stream 
Functions". The call 

(define s (make-string-output-stream))

creates a string-output-stream and assigns it to the symbol s. Now s can be used as an output port, 
and will receive whatever is written to it. The call 

(define str (get-output-stream-string s))

extracts the output-stream string from s and binds it to str. 
This is a little like using sprintf() in C to write formatted output to a character array, a notable 
difference being that in C the array doesn't just grow dynamically to accommodate its input! 
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5. XLISP OBJECT SYSTEM 
XLisp provides a single-inheritance Object System inspired by Smalltalk. We'll illustrate here a few of 
its features; more details can be found in the XLisp Manual. 
Here's a definition of a class of two-dimensional geometric points: 

[1] (define-class point
(instance-variables x y))

#<Class:point #x1618c94>
[2] _

(The return value is a printed-representation of the point class; the hex number (prefaced in XLisp 
with #x) is an internal address.) 
This lets us create point objects by sending the point class the message  'new: 

[2] (define p1 (point 'new))
p1
[3] _

Generally, sending a message to an object (or a class) is written in the same syntax as a procedure 
call, with the object (or class) occupying the procedure position (first list element) and the first 
argument being the message which is typically a quoted symbol. The message 'new, sent to a class, 
always creates a new object instance belonging to that class. Here we've created a new point object 
and bound it to the symbol p1. 
All objects respond to the 'show message by displaying their internals (I give an abbreviated version 
below):  

[3] (p1 'show)
Instance variables:

x = ()
y = ()

[4] _

We need to write new "methods" to allow setting of the instance variables. For example: 
[4] (define-method (point 'set-x! value)

(set! x value))
set-x!
[5] (define-method (point 'set-y! value)

(set! y value))
set-y!
[6] _

Notice that inside the body of a method definition, instance variables can be referred to by name. 
Now we can establish coordinates for our point: 

[6] (p1 'set-x! 3)
3
[7] (p1 'set-y! 4)
4
[8] (p1 'show)
Instance variables:

x = 3
y = 4

[9] _

Other methods can be added as required: for example, one to compute the distance of a point from the 
origin (0, 0) according to the formula sqrt(x^2 + y^2): 
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[9] (define-method (point 'distance-from-origin)
(let ((xsq (* x x))

(ysq (* y y)))
(sqrt (+ xsq ysq))))

distance-from-origin
[10] _

The distance of p1 from the origin = sqrt(3^2 + 4^2) = sqrt(9 + 16) = sqrt(25) = 5: 
[10] (p1 'distance-from-origin)
5
[11] _

Note from statement [3] above that a newly created point doesn't have numerical coordinates (the 
instance variables are initialized to NIL); this would cause the 'distance-from-origin method to fail 
if applied to a new point. There is a standard way to customize the initialization of new objects: override 
the default 'initialize method as illustrated here: 

[11] (define-method (point 'initialize &optional (xval 0) (yval 0))
(set! x xval)
(set! y yval)
self)

initialize
[12] _

The symbol 'self is bound, within the body of an object method, to the object itself; the 'initialize 
method must always return the initialized object as value, hence the final line after the set! 
statements. Now we can pass to the class method 'new the same arguments we want it to pass to the 
'initialize method for the newly created instance: 

[12] (define p2 (point 'new -1 2))
p2
[13] (p2 'show)
Instance-variables:

x = -1
y = 2

[14] _

Since we wrote our 'initialize method with optional arguments, omitting explicit initializing data is 
safe: 

[14] (define p3 (point 'new))
p3
[15] (p3 'show)
Instance-variables:

x = 0
y = 0

[16] (p3 'distance-from-origin)
0
[17] _

This brief introduction has made no mention of class variables or inheritance (other than the use of 
methods 'new and 'show which are inherited from superclasses). Our goal was simply to illustrate the 
syntax of class and object creation, method definition, and message passing. 
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6. NAMED LET 
The general form of let given in the XLisp Manual—under "Binding Forms"—is: 

(let [name] bindings body)

where bindings has the form ((variable init) ...), and body is any sequence of S-Expressions to 
be evaluated sequentially, the value of the last being the value returned by the let.  

Although we haven't mentioned it up till now, the let can be named by placing an optional symbol 
between the let and the bindings. To explain the meaning and use of this construct, we begin by 
noting that let is equivalent to invocation of an anonymous procedure. Consider the following 
example: 

[1] (let ((x 5) (y 10))
(+ x y))

15
[2] _

The body of the let—here the single S-Expression (+ x y) — is evaluated in a local environment with 
symbols x and y, in which x has been bound to 5 and y to 10. The result of the evaluation is 15. 
The expression in [1] is exactly equivalent to the following: 

[2] ((lambda (x y) (+ x y)) 5 10)
15
[3] _

Notice that in [2] we have a list whose first term is the lambda expression (lambda (x y) (+ x y)). 
Evaluating this expression produces a procedure that is then applied to the arguments 5 and 10. How 
is the procedure applied to the arguments? First, a local environment is created containing the formal 
arguments x and y. Then the formal arguments are bound to the actual arguments—5 and 10—and 
then the body of the lambda expression—(+ x y)—is evaluated in this environment. This is exactly 
the action of the let in [1]! 
Thus, let creates a procedure whose formal arguments are the VARIABLEs in its bindings list. The 
actual arguments are the values of the INIT expressions in the bindings list. Applying the procedure to 
the arguments means evaluating the body in this environment. 
The procedure, as in [2] above, is anonymous (that is, unnamed). This means there's no way for the 
implied procedure to call itself recursively. The point of the named-let construction is to give the 
implicitly-defined procedure a name so that it may refer to itself. 
For example: 

[3] (let loop ((i 1))
(if (> i 3)

'done
(begin

(print i)
(loop (+ i 1)))))

1
2
3
done
[4] _

Here the procedure created by the let is named loop. It has a formal argument, i, and the body 
returns 'done if i is greater than 3. If i is not greater than 3, i is printed and loop is called recursively 
with i incremented by 1. This is equivalent to the following: 
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[4] (let (loop)
(set! loop (lambda (i)

(if (> i 3)
'done
(begin

(print i)
(loop (+ i 1))))))

(loop 1))
1
2
3
done
[5] _

Here the let creates a local environment in which the symbol loop is visible (though initially unbound). 
loop is then assigned (by the set!) the value of the lambda expression that follows. Inside the body of 
this lambda expression the symbol loop occurs—why isn't this circular reasoning? Simply because the 
value of loop isn't required until the lambda procedure is run, which first occurs in the invocation (loop
1) that follows the set!. After the set!, loop is bound to the lambda procedure itself. 
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7. MULTIPLE VALUES 
XLisp borrows from Common Lisp the ability of a procedure to return multiple values. This is potentially 
more efficient than returning a list of values—the list must be CONSed together and then destructured 
at the receiving end. One can create multiple values using the procedure values, that takes any 
number of arguments and returns them all (as values) in the same order:  

[1] (values 1 2 3)
1
2
3
[2] _

One can also use the functions values-list that takes a list as its single argument and then returns 
all the list's elements as the multiple values: 

[2] (values-list '(a b c))
a
b
c
[3] _

Of course to make any use of this one needs forms that capture multiple values. The simplest is 
multiple-value-set! whose first argument is a list of symbols and whose second argument is any 
expression returning the appropriate number of multiple values: 

[3] (multiple-value-set! (p q r) (values 10 20 30))
30
[4] p
10
[5] q
20
[6] r
30
[7] _

More useful is the special form multiple-value-bind, whose syntax in the XLisp Manual is given as: 
(multiple-value-bind (var ...) vexpr expr ...)

Here (var ...) is the list of symbols to be bound, exactly as in the first argument multiple-value-
set!. The difference is that multiple-value-set!, like set!, looks for its symbols starting with the 
innermost enclosing lexical environment and modifies the first instance of the symbol it finds—or, 
finding none, adds the symbol to the global environment. multiple-value-bind, on the other hand, 
behaves like let: it creates a new nested environment and introduces the symbols there. It is in this 
nested environment that the arguments following vexpr are evaluated, sequentially as with let, with 
the value of the final expr being the value of the form. 
For example: 
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[7] (multiple-value-bind (p q r) (values 1 2 3)
(format #t "p = ~A~%" p)
(format #t "q = ~A~%" q)
(format #t "r = ~A~%" r))

p = 1
q = 2
r = 3
()
[8] (list p q r)
(10 20 30)
[9] _

This shows that p, q, r have been defined locally within the scope of the multiple-value-bind, and 
that their global values are unaffected (as seen in [8]). 

It is possible to return no values whatever, by simply invoking values without any arguments: 
[9] (values)
[10] _

This allows us to eliminate the distracting printing of return values from calls that are invoked for 
printed output—as for example in the final () that follows the three printed lines produced by [7]. This 
() results from the final format call, which returns () as its value, which then becomes the value of 
the multiple-value-bind call and which is dutifully printed by the READ-EVAL-PRINT loop in the 
standard way. Observe: 

[10] (display "Printed Output")
Printed Output
#t
[11] (begin (display "No distractions!") (values))
No distractions!
[12] _
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