
mgl_release.txt
05/08/101
12:27:20 1

***** mGL Release Notes *****

18 April 2001

Changes since 17 November 2000:

1) mglDrawBuffer() now returns a bitfield which indicates which MPE or MPEs were
 assigned new work. Previously, mglDrawBuffer returned void, so this change will
 not affect existing code.

2) A new entry point,

 void mglWaitForMPEs(GLbitfield mpes);

 was added. The bifield is as in mglDrawBuffer(). The function will return when
 the indicated MPEs become idle.

3) Some minor bugs in glGetFixedv() were fixed.

17 November 2000

Major changes since 8 November 2000:

1) An argument has been added to mglDrawBuffer():

 void mglDrawBuffer(GLenum mode, GLenum vertexFormat, const long *vertexBuffer,
 long vertexCount, int numMPEs);

 The new argument, which is the final one, specifies the number of MPEs which
 should be used to render the buffer. It is clamped to [1, allocatedMPEs], where
 allocatedMPEs is the number of MPEs allocated for mGL rendering. If numMPEs is
 too large for the number of primitives in the buffer, a lower number of MPEs will
 be used.

 This new argrument is necessary for two reasons:

 a) It allows the application to maintain ordered rendering when blending is
 enabled. See (2) below.

 b) It allows applications greater freedom to tune the mGL concurrency. Since mGL
 is fill-limited, applications may choose to assign MPEs according to the expected
 screen space area of the geometry, rather than by the number of vertices it
 contains. In general, applications have some a priori knowledge of this area,
 whereas mGL does not, and it is impractical to calculate.

2) Extremely limited alpha-blending support has been added to mGL. The state vectors are:

 a) blend enabled, blendSrcFactor GL_SRC_ALPHA, blendDstFactor GL_ONE_MINUS_SRC_ALPHA,
 depth test enabled, depthFunction GL_LESS, lighting disabled, texture disabled

 b) blend enabled, blendSrcFactor GL_SRC_ALPHA, blendDstFactor GL_ONE_MINUS_SRC_ALPHA,
 depth test enabled, depthFunction GL_LESS, lighting disabled, texture enabled,
 min filter GL_LINEAR, texture env mode GL_REPLACE, texture format eClut4 or eClut8

 For these two cases, glDepthMask() works; otherwise, glDepthMask() is unimplemented.

 See the sample "blend".

3) A new utility,

mgl_release.txt
05/08/101
12:27:20 2

 GLint mglCountIdleMPEs(void)

 has been added. It returns the number of rendering MPEs which are currently idle.

8 November 2000

Major changes since 4 March 2000:

1) Numerous hangs have been fixed.

2) Performance has improved significantly due to improved rendering parallelism.

3) The parameters for mglInit() have been simplified:

 GLint mglInit(mmlDisplayPixmap *screen, GLint pixelFilter, GLint numBuffers,
 GLint numMPEs);

 That is, the first, second, fourth, fifth and sixth parameters of the original
 version have been eliminated. These parameters were redundant with data
 accessible through the screens pointer.

4) The values returned form mglInit() and mglEnd() have been made consistent with
 other VM Labs libraries: 0 is returned for success and -1 is returned for
 failure.

5) SDRAM-based textures now work. The sdramFlag field of the GLTEXTURESTRUCTURE has
 been removed; this information is implicit in the value of the pbuffer field.

6) Paletted textures now work. In addition, the GLTexture structure now contains a
 pointer to the CLUT. See include/nuon/gl.h.

7) The parameters for mglInitJPEGTexture() and mglInitBMPTexture() have changed:

 GLTexture *mglInitJPEGTexture(JOCTET *jpeg_start, GLuint jpeg_size,
 GLuint pixelType, GLint scale, GLuint sdramFlag);

 GLTexture *mglInitBMPTexture(void *bp, GLuint convertToYCrCb, GLuint sdramFlag);

 For the former call, pixelType must be either e655, eGRB655 or e888Alpha.
 Currently, eGRB655 should not be used, as RGB texturing is unimplemented.

 For the latter call, if convertToYCrCb is nonzero, the palette is converted from
 RGB to YCrCb. Currently, this should always be nonzero, since RGB texturing is
 unimplemented.

 For both calls, if sdramFlag is nonzero, the texture is placed in SDRAM.

8) The old, broken chroma key support has been withdrawn. New, alpha-based
 chromakey rasterizers have been added:

 paletted texture, chroma key
 paletted texture, chroma key, bilerp
 paletted texture, chroma key, intensity lighting
 paletted texture, chroma key, bilerp, intensity lighting

 These rasterizers reject any fragment having alpha != 0xff.

 Non-paletted \223chroma key\224 textures are not supported at present. Applications
 will typically create \223chroma key\224 textures using mglNewTexture.

 As always, GL_CHROMAKEY_EXT is used to enable and disable chromakey.

mgl_release.txt
05/08/101
12:27:20 3

9) mglDrawBuffers() has no longer calls glWaitForAllMPEs() prior to returning. The
 caller must not modify the memory to which the input vp points without first
 calling glFinish(). This modification improves the degree of parallelism between
 the caller and mGL rendering. Also note that the input vertex buffer must reside
 in DRAM.

10) The header include/nuon/gltypes.h is obsolete and should no longer be used.
 Doing so will generate a warning. Its contents have been merged into
 include/nuon/gl.h.

11) The prototypes for mglWaitForAllMPEs(), mglWaitForMPE(), mglWaitForAnyMPE(),
 mglIncrementRenderCounter() and ClearGLRenderCounter() have been removed from
 gl.h. Applications requiring synchronization with mGL should call glFinish().

12) The function mglInvalidateMPE() now takes the comm bus id of the target MPE.
 This is necessary because the application is unaware of the mapping of the
 internal MPE indices used by mGL to the MPE comm bus ID. Attempting to
 invalidate an MPE not allocated by MGL has no effect.

13) Lighting was badly broken and has been overhauled. Due to tight memory
 constraints on the rendering MPEs, the maximum number of lights has been
 reduced to four. Only directional lights are supported. Backface material
 properties are ignored.

14) The old dithering functionality enabled by GL_DITHER has been withdrawn.

15) In a debug build, mgl may call assert(). In a release build, mGL will never call
 assert() or exit().

16) The old "chroma" demo has been withdrawn as it will not function with the new
 chromakey code. A new demo will be supplied at a later date.

17) The old "cube" demo has been withdrawn. It was too uninteresting to justify
 updating its code for the new game controller.

18) For compatibility with the Samsung Extiva game controller, the "room" demo now
 uses the joypad instead of the joystick. Also, since lighting has been fixed,
 it has become apparent that many of the normals in the room demo are reversed.
 Some have been corrected by hand, but many remain incorrect.

19) A new demo, "simple", has been added. This extremely simple demo is provided
 as a "hello world" test for mGL. It is noninteractive.

20) The call to mmlSimpleVideoSetup() in each sample has been removed. This call
 is unnecessary, and has the undesirable effect of causing garbage to displayed
 until the first rendered frame is displayed by mglSwapBuffers().

21) The mGL document "LIBMGL" has been updated.

