
V M L A B S

MML2D
2D Graphics Library

For

Revision 2.61
14-March-01

VM Labs, Inc.
520 San Antonio Rd
Mountain View, CA 94040

Tel: (650) 917-8050
Fax: (650) 917-8052

Copyright  1999-2001 VM Labs, Inc. All rights reserved.

NUON™, Merlin™, Merlin Media Architecture™ and the logo are
trademarks of VM Labs, Inc.

Proprietary and Confidential to VM Labs, Inc.

The information contained in this document is confidential and proprietary to
VM Labs, Inc., and is provided pursuant to a Non-Disclosure agreement
between VM Labs, Inc., and the recipient. It may not be distributed or copied
in any form whatsoever without the express written permission of VM Labs.

The information in this document is preliminary and subject to change at any
time. VM Labs reserves the right to make changes to any information
described in this document.

Please address comments or report errors to Mike Fulton at VM Labs
(mfulton@vmlabs.com).

14 -M AR-01 V M LABS CONFIDE N TIAL P R OP RIE TAR Y P AGE I I I

Table of Contents
1. INTRODUCTION ...1-1

2. OVERVIEW OF MML2D..2-1
2.1 API Layers...2-1

2.1.1 Low Level Direct Mode ...2-1
2.1.2 High Level List Mode ..2-2
2.1.3 MPE Rendering Functions ..2-2

2.2 The Rendering Process ..2-2
3. BASIC DATA TYPES...3-1

3.1 System Information..3-1
3.1.1 mmlSysResources...3-1

3.2 Style & Color Values...3-1
3.2.1 mmlColor...3-1
3.2.2 m2dLineStyle ...3-1
3.2.3 m2dEllipseStyle ...3-3
3.2.4 mmlPoint..3-4
3.2.5 m2dPoint ...3-5
3.2.6 m2dRect ...3-5
3.2.7 m2dBox..3-5
3.2.8 mmlBox ..3-5
3.2.9 mmlLayoutMetrics ...3-5
3.2.10 Miscellaneous Enumerated Types ...3-6

3.3 Graphics Context ...3-6
3.3.1 mmlGC...3-6

3.4 Bitmap Definitions...3-11
3.4.1 mmlPixmap ..3-11
3.4.2 mmlAppPixmap..3-12
3.4.3 mmlDisplayPixmaps ..3-12

3.5 Command Sequences...3-12
3.5.1 mmlSequence ...3-12

4. GENERAL MEDIA LIBRARY FUNCTIONS4-1
4.1 Pixmap Initializers and Attribute Setting...4-1

4.1.1 mmlInitAppPixmaps...4-1
4.1.2 mmlInitDisplayPixmaps...4-2
4.1.3 mmlReleasePixmaps ..4-3
4.1.4 mmlSetPixmapClut ..4-3

4.2 Other Initialization...4-3
4.2.1 mmlPowerUpGraphics ..4-3
4.2.2 mmlInitGC ...4-3

14 -M AR-01 V M LABS CONFIDE N TIAL P R OP RIE TAR Y P AGE IV

4.2.3 mmlSimpleVideoSetup ...4-3
4.2.4 mmlInitFontContext...4-4
4.2.5 m2dSetPoint...4-4
4.2.6 m2dSetRect ..4-4

5. COLOR ALLOCATION AND MANIPULATION................................5-1
5.1.1 mmlColorFromRGB ..5-1
5.1.2 mmlColorFromYCC...5-2
5.1.3 mmlGetYCCComponents ...5-2
5.1.4 mmlColorFromYCCf..5-2
5.1.5 mmlGetYCCFloatComponents...5-2
5.1.6 mmlGetYCCComponents ...5-3
5.1.7 mmlColorFromRGBf ...5-3
5.1.8 mmlGetRGBFloatComponents ..5-3
5.1.9 mmlGetRGBComponents...5-3
5.1.10 mmlSafeColor ..5-3
5.1.11 mmlSafeColorLimits ..5-4
5.1.12 mmlCustomSafeColorLimits ..5-4

6. COPY FUNCTIONS ...6-1
6.1.1 m2dReadPixels ..6-1
6.1.2 m2dWritePixels..6-1
6.1.3 m2dCopyRect...6-2
6.1.4 m2dCopyClutRect..6-2
6.1.5 m2dCopyRectScaled ..6-2
6.1.6 m2dCopyRectFast..6-3
6.1.7 m2dCopyRectDis ...6-5

7. FILL FUNCTIONS ...7-1
7.1.1 m2dDrawPoint ..7-1
7.1.2 m2dSmallFill ...7-1
7.1.3 m2dFillColor ...7-1
7.1.4 m2dFillClut..7-2

8. LINE DRAW FUNCTIONS ...8-1
8.1.1 m2dInitLineStyle..8-1
8.1.2 m2dDrawLine ..8-1
8.1.3 m2dDrawStyledLine ..8-1
8.1.4 m2dDrawPolyLine...8-1

9. ELLIPSE DRAW FUNCTIONS ..9-1
9.1.1 m2dInitEllipseStyle..9-1
9.1.2 m2dDrawEllipse ..9-1
9.1.3 m2dDrawStyledEllipse ..9-1
9.1.4 m2dDrawQuadArc...9-2

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E V

9.1.5 m2dDrawStyledQuadArc...9-2
10. BOX FUNCTIONS..10-1

10.1.1 m2dInitBox ..10-1
10.1.2 m2dDrawBox...10-1
10.1.3 m2dEraseBox...10-1
10.1.4 m2dRedrawBox..10-1
10.1.5 m2dReleaseBox..10-2

11. ARROW FUNCTIONS...11-1
11.1.1 m2dInitArrow ..11-1
11.1.2 m2dSetArrowPixel ...11-1
11.1.3 m2dShowArrow ...11-1
11.1.4 m2dHideArrow ..11-1
11.1.5 m2dRedrawArrow..11-2
11.1.6 m2dMoveArrow ...11-2
11.1.7 m2dDeleteArrow..11-2

12. TEXT AND FONTS ..12-1
12.1.1 mmlGetRegisteredFonts ..12-1
12.1.2 mmlAddFont ..12-2
12.1.3 mmlRemoveFont ..12-2
12.1.4 mmlGetFontName..12-2
12.1.5 mmlSetTextProperties..12-2
12.1.6 mmlInitScaledTextStyle ...12-3
12.1.7 mmlInitTextStyle (deprecated)...12-4
12.1.8 mmlSetTextStyle...12-4
12.1.9 mmlSetTextModel ..12-4
12.1.10 mmlSimpleDrawText..12-5
12.1.11 mmlSimpleDrawBaseline...12-5
12.1.12 mmlGetTextBox ...12-5
12.1.13 mmlGetStyleLayoutMetrics..12-6
12.1.14 mmlGetLayoutMetrics ...12-6
12.1.15 mmlCharKindQ ...12-6

13. SEQUENCE FUNCTIONS...13-1
13.1.1 mmlOpenSeq..13-1
13.1.2 mmlCloseSeq ...13-1
13.1.3 mmlExecuteSeq..13-1
13.1.4 mmlReopenSeq ..13-1
13.1.5 mmlReleaseSeq ..13-2

This page intentionally left blank.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 1 -1

1. Introduction

The Merlin Media Library (MML) is a rich set of functions and objects that provide
programmers with tools for building exciting multimedia applications for NUON.1

The goal of the MML is to make it possible to seamlessly integrate text, graphics
(both 2D and 3D), video (including MPEG), and audio in applications.

The highest-level MML functions are C APIs for 2D and 3D graphics, MPEG and
other video playback, and for audio playback. These APIs are also accessible from
other high level languages (such as C++ and Pascal) that run on Merlin Media
Architecture compliant devices.

There is a single direct mode API for audio functions, incorporating both MIDI and
digital audio.

The movie API is a high level interface for playing back movies, including both
video and audio.

There are two C APIs for graphics: the direct mode API, in which drawing
commands for 2D and 3D primitives are issued directly, and the list mode API in
which a single C function call draws a list of primitives that can include 2D objects,
3D objects, and movies. These primitives can be combined in a hierarchy, so that
for example an MPEG-1 video could be used as a texture on the side of a rotating
3D cube.

Also provided in the MML are low-level assembly language functions that directly
access the Merlin Processing Elements (MPEs). Programmers will not usually need
to use these low-level functions, but they are available for developers with
particular performance needs who wish to customize their applications or to
achieve higher levels of performance than are possible with the high level APIs.

The MML may be used for graphics and audio output by different kinds of
applications.

Figure 1-1 shows the three kinds of applications: host applications without any
NUON specific code, mixed NUON and host (host application with MML
libraries), and native NUON (MMA compliant).

1 The original “nickname” for NUON used internally at VM Labs was “MERLIN”.

This is still reflected in the names of things like development tools, libraries, and
related documentation.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 1 -2

 MMA
ApplicationHost OS Application

Host OS
APIs

Merlin Device
Drivers

Merlin Media
Library

(running on host)

MML
(running native)

MPE level MML support functions

Merlin Processing Elements (MPEs)

Host Processor

Nuon

Figure 1-1, MML Application Types

Applications running on a system with a host processor and operating system (such
as the Motorola Blackbird platform with the Microware DAVID operating system)
can be linked with MML libraries in order to achieve higher performance or to take
advantage of NUON specific features, at the cost of portability. Such applications
may also use that operating system's input facilities for interacting with the user and
may mix MML calls and OS output calls using a NUON device driver.

Applications that run entirely on the NUON chip will typically use MML libraries
running native on NUON.

Applications of both types may make NUON BIOS calls to read user input such as
joystick events (see the NUON BIOS documentation).

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 2 -1

2. Overview of MML2D

2.1 API Layers
There are three layers in the MML2D graphics API: the MPE rendering functions,
low level (direct mode) functions with a C language interface, and high level (list
mode) functions with a C language interface.

Each layer is implemented in terms of layers underneath it: the high level functions
call the direct mode functions, and both call MPE rendering functions directly (or
indirectly).

Merlin Processing Elements

Direct Mode MPE layers

Direct Mode API
Motion System

API Movie Audio 3D2D

APPLICATION

Figure 2-1, API Layers

The C language API may run on a local MPE, or there may be a version available
to code running on a host processor. The low-level rendering functions must run on
a local MPE. They are usually written in MPE assembly language for efficiency.

2.1.1 Low Level Direct Mode
The low level direct mode C API provides direct rendering calls. It is intended to
make it easy to port applications (such as games) which do not require a high level
API or which already have their own custom API. Such a custom API could be
implemented in terms of the low level C API. The objects of the low level C API
are primitives such as points, lines, triangles, triangle meshes, and bi-cubic patches.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 2 -2

2.1.2 High Level List Mode
The high-level list mode C API is designed to be easier to use, and somewhat more
abstract than the direct mode API. The objects of the list mode API have attributes
such as position, orientation, rotation, and movement. These objects are arranged in
a hierarchy. The position and orientation of an object is defined in terms of the
position and orientation of its parent. Calls are provided to render and move
objects, and to test for collisions between objects. These calls work for both 2D and
3D objects, providing a unified and easy to use interface for the programmer.

2.1.3 MPE Rendering Functions
Ultimately the MPEs are used to do almost all rendering. Direct access to the MPEs
allows for complete customization of the rendering process. The high-level C
language API provides an easier to use interface, while still providing hooks so that
the MPE rendering functions may be customized.

The MPE rendering functions are small MPE programs that take commands from
the high level API and dispatch them to the MPEs being used for rendering.

The graphics APIs can use as many MPEs as are available; more MPEs will result
in better performance, but sometimes some MPEs may be reserved for other uses
such as audio or MPEG, and in these cases the graphics APIs will still function, but
at a lower level of performance.

2.2 The Rendering Process
Calls at all layers of the 2D and 3D APIs may be mixed during the rendering
process. For example, the 2D API or Movie API may be used to generate a texture
to be placed on a 3D object. A 2D overlay may be placed at a constant Z value in a
3D scene, to provide a frame or titles. 3D objects may also be rendered on top of
an MPEG-1 video screen, external video channel, or an image generated by the 2D
API. In fact, in the high-level list mode API 2D, 3D, and movie objects are treated
virtually identically, and can be intermixed freely.

User provided rendering functions might also be used to draw into the output view.
If Z buffering is used, this can be done at any stage in the rendering process
(subject to the restriction that transparent objects must be rendered after any objects
behind them). This means that, for example, a ray tracing function may be used to
render a special object into the Z buffer after (or before!) the "standard'' graphics
APIs have been used to draw more traditional objects such as polygons and bi-
cubic patches in that buffer.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 3 -1

3. Basic Data Types

This section describes the basic data types and structures used by the MML2D
library. All of these data types are defined within the MML2D.H header file.

3.1 System Information
The following data types maintain information about the entire NUON system.

3.1.1 mmlSysResources
The mmlSysResources object keeps track of system resources such as fonts,
SDRAM allocation, and network sockets. The application programmer generally
will only need to call the initialization function for this object and pass it to the
functions that require it.

3.2 Style & Color Values
The following data types maintain information about drawing colors, line styles, and
other such attributes that are used to control details about how graphics objects are
rendered.

3.2.1 mmlColor
The mmlColor is an abstract data type hiding the specific representation of a color.
Functions are supplied to create color values based upon their representations in both
RGB and YCrCb color spaces.

Colors can be generated from components specified as integers in the range 0 to 255,
or as floating point numbers in the range 0.0 to 1.0 (-0.5 to 0.5 for Cr and Cb).

Internally all colors are represented in integer YCrCb space that conforms to
Recommendation ITU-R BT.601, which is the color space used by the hardware.

3.2.2 m2dLineStyle
An m2dLineStyle object encapsulates the style properties of a line. It is used as an
argument in the line drawing functions, and a default style is included in the graphics
context structure. The m2dLineStyle structure has the following fields:

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 3 -2

m2dLineKind lineKind — The line type. There are 8 line types:

Note: types eLine5 and eLine6 can intermittently crash in SDK0.85 and some
previous SDK’s.

Line Type Description
eLine1 Not anti-aliased. Straight ends.
eLine2 Not anti-aliased. Rounded ends.
eLine3 Anti-aliased. Rounded ends.
eLine4 Not anti-aliased. Rounded ends. Uses lineRandNum, an integer

array of 4 random numbers defined in m2dLineStyle, to produce
a speckled line.

eLine5 Anti-aliased. Rounded ends. Uses a second color, foreColor2,
which is defined in m2dLineStyle to produce a 2-colored line.
The line starts with foreColor2 in the first endpoint and gradually
interpolates to the first color, foreColor, at the second endpoint.

eLine6 Anti-aliased. Rounded ends. Uses a second color, foreColor2,
which is defined in m2dLineStyle to produce a 2-colored line.
The line starts with foreColor2 in the first endpoint and gradually
interpolates to the first color, foreColor, at the second endpoint.

Has blend interpolation: in defining the endpoint colors, the last
byte of each color that is normally set to zero, determines the
blend level, with 0x3F being maximum opacity. So if foreColor2
were 0xf080803f and foreColor were 0xf0808000, the resulting
line is a solid white line that gradually becomes a faint white line.
Setting the last byte of both foreColor and foreColor2 to 0x00
produces no display.

eLine3clut Emulates type eLine3 when pixelFormat is eClut8.
eLine7clut Emulates type eLine5 when pixelFormat is eClut8. The line starts

with foreColor2 in the first endpoint and gradually interpolates to
the first color, foreColor, at the second endpoint. The indices
between foreColor and foreColor2 will be used as pixel values,
between the 2 endpoints. In other words, foreColor and
foreColor2 will be used as the minimum and maximum of a range
of color indices. The value of foreColor can be less than or
greater than foreColor2.

mmlColor foreColor — The line color. Line types which use a color lookup table
(eLine3clut and eLine7clut) should assign an index in the table.

uint32 thick — The line thickness. All lines are an even number of pixels thick. An
odd value of thick is automatically incremented.

uint32 alpha — The line translucency which is used by eLine3, eLine5 and eLine6
for anti-aliasing. Values are in the range 0 to 255, with 0 meaning completely opaque
and 255 meaning completely transparent.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 3 -3

mmlColor foreColor2 — This is the second color (besides foreColor) used by
eLine5, eLine6 and eLine7clut. Line types which use a color lookup table
(eLine7clut) should assign an index in the table.

int32 colorBlend1 — Both colorBlend1 and colorBlend2 which is described below
are used by eLine6 for blend interpolation. Uses only the lower 8 bits of int32 and
eventually becomes the last byte of foreColor.

int32 colorBlend2 — Used by eLine6 for blend interpolation. Uses only the lower 8
bits of int32 and eventually becomes the last byte of foreColor2.

int32 lineRandNum[4] — This integer array of 4 random numbers is used by eLine4
to produce a speckled line.

3.2.2.1 Notes
Line types with rounded ends are extended at both endpoints by: 0.5*thick. For
example, a line with endpoints [(0,10), (0,20)] and width of 10 becomes a line with
endpoints [(0,15), (0,25)]. The beveled end is a half-circle with a radius of 5.

All lines are of even thickness and at least two pixels thick. The lines are
approximately centered on the beginning and ending coordinates. For example, a
horizontal line of type eLine1, 6 pixels thick, drawn from (10, 20) to (30, 20) would
fill the rectangle from (10, 18) through (30, 23).

Lines which use a color lookup table (eLine3clut and eLine7clut) should assign the
number of gradations per color in the palette to mmlGC::nClutAlpha. The current
implementation assumes that for a certain color, a lower index value indicates a more
intense value, than a higher index value. Therefore, to emulate an anti-aliased line of
a certain color, create a palette where the intensity of a color decreases as the index
value increases. For example, an index value of 17 for the color black is more
intense than an index value of 20 for black.

Any field in the m2dLineStyle structure which cannot be changed by a call to
m2dInitLineStyle() can still be changed by explicitly changing the field in the
m2dLineStyle object. (e.g., assigning a value to LS. foreColor2 to change the
foreColor2 field).

3.2.3 m2dEllipseStyle
An m2dEllipseStyle object encapsulates the style properties of an ellipse. It is used
as an argument in the m2dDrawStyledEllipse function, and a default style is included
in the graphics context structure.

The m2dEllipseStyle structure has the following fields:

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 3 -4

F16Dot16 ratio — This fixed point number approximately represents the square root
of the ratio of the ellipse width to the ellipse radius. The allowable range is from 1 to
0x1FFFE. In the case of unfilled ellipses, the width is the width of the outline. In the
case of translucent filled ellipses, it is the width of the edge blur. For example, a
value of 0x8000 (0.5) will yield an unfilled ellipse with an outline edge that is one
fourth the thickness of the ellipse radius.

mmlColor foreColor — The ellipse color.

f24Dot8 xScale — The x-eccentricity. Assigning the same value to yScale generates
a circle. In 8.8 format using only the lower 16 bits of f24Dot8 (i.e., the maximum
value is ox7FFF).

f24Dot8 yScale — The y-eccentricity. Assigning the same value to xScale generates
a circle. In 8.8 format using only the lower 16 bits of f24Dot8 (i.e., the maximum
value is ox7FFF).

uint32 alpha — The translucency of foreColor. Values are in the range 0 to 255,
with 0 meaning completely opaque and 255 meaning completely transparent.

int32 fill — Determines if an ellipse is hollow (fill has a value of 0) or filled (fill has
a value of 1).

3.2.3.1 Notes
Ellipses which use a color lookup table should assign the number of gradations per
color in the palette to mmlGC::nClutAlpha. The current implementation assumes
that for a certain color, a lower index value indicates a more intense value, than a
higher index value. Therefore, to emulate an anti-aliased line of a certain color,
create a palette where the intensity of a color decreases as the index value increases.
For example, an index value of 17 for the color black is more intense than an index
value of 20 for black.

The xScale and yScale factors are multiplied by the radius provided in the ellipse
drawing functions to create the x and y axes of the ellipse. The range of alpha is 0 to
255, but the 2 least significant bits are ignored.

3.2.4 mmlPoint
An mmlPoint is a set of three 16.16 fixed point numbers representing a point in 3D
space (or in 2D space, if the Z coordinate is to be ignored).

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 3 -5

3.2.5 m2dPoint
An m2dPoint is a set of two unsigned 16 bit integers representing a coordinate in 2D
space.

3.2.6 m2dRect
An mmlRect is a set of two points representing a rectangle in 2D space. The Z
coordinates of the two points are ignored.

3.2.7 m2dBox
An m2dBox is an unfilled rectangle (i.e. the outline of a box) that can be quickly
drawn and erased.

3.2.8 mmlBox
An mmlBox is a set of points in 3D specifying a rectangular box.

3.2.9 mmlLayoutMetrics
An mmlLayoutMetrics object is used to obtain a variety of important pieces of
information about the layout properties of a particular text style and font
combination. This information can be used by an application to determine how text
layout should be done.

The mmlLayoutMetrics structure has the following fields:

uint32 columnHeight — Pixel height of a line using this style. Equals the ascent
height + descent height + between-line leading.

uint32 base — Number of pixels from top of line to the text baseline. (For English,
this is the imaginary line on which all Capital letters rest.

f16Dot16 ascent — The fractional pixel height (measured from baseline) of the
highest ascender in the typeface used in this style.

f16Dot16 descent — The fractional pixel height (measured from baseline) of the
lowest ascender in the typeface used in this style. This is always a negative number.

f16Dot16 maxWidth — The fractional pixel width of the widest glyph in the typeface
used in this style.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 3 -6

uint32 ttPointSize — The actual pointsize used by the T2K type engine to render the
text in this style.

uint32 firstCharCode — The lowest character code represented in the font used for
this style.

uint32 lastCharCode — The highest character code represented in the font used for
this style.

uint32 numCharacters — The total number of characters represented in the font used
for this style.

3.2.10 Miscellaneous Enumerated Types
In addition to the data types mentioned above, there are a number of enumerated
types. They are used to specify unique parameter values used as arguments by
various library functions, or as fields of a larger data structure. Some of these types
are listed in the table below.

charKind eBool m2dFill
m2dLineKind m2dTextEmphasis m2dTextWeight
mmlDisplayFlags mmlDrawOp mmlPixAspect
mmlPixFormat mmlPixmapProperties MmlStatus
mmlVideoLayer mmlZCompare TextEncoding
textMix typeTechnology eSafeColorSel

All of these enumerated types, along with the corresponding definitions of specific
values, are found in the MML2D.H include file.

3.3 Graphics Context

3.3.1 mmlGC
The information about how to draw 2D graphics primitives is stored in a graphics
context structure of type mmlGC. This object encapsulates state for the rendering
functions.

Most functions have a large number of options; for example, the width of lines to be
drawn, the color to be used in filling areas, whether aspect ratio correction is on or
off, etc. Rather than passing each option as an individual parameter to every drawing
function, we keep the state in a graphics context and pass the drawing function a
pointer to that structure. This also makes it possible to set up a global state that
applies to subsequent drawing commands.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 3 -7

The graphics context structure has two main purposes: one is to simplify the
interfaces to drawing functions (which would otherwise need a large number of
parameters to specify how to draw primitives), and the other is to make it convenient
to draw a series of primitives with the same style and settings.

For example, a program might keep one graphics context for drawing the main region
of its display in solid colors, and a second for use in an anti-aliased translucent
overlay on top of the main screen.

The mmlGC structure has the following members:

3.3.1.1 mmlGC::z
Fixed16 z

A 16.16 fixed point number giving a default Z value to be used in Z comparisons in
the event that the source data has no Z buffer.

3.3.1.2 mmlGC::alpha
uint32 alpha

The least significant 16 bits are used as the alpha value in functions that can do
translucent drawing. A value of 0xFFFF is completely opaque. A value of 0x0000 is
completely transparent.

3.3.1.3 mmlGC::foreColor
mmlColor foreColor

Gives the default color to use when drawing; this color will be used in any operations
that do not explicitly specify a color. The alpha value associated with the color, if
any, will be ignored; the alpha member of the mmlGC structure will determine the
alpha value to be used when this is required.

3.3.1.4 mmlGC::backColor
mmlColor backColor

Gives the default background color when drawing. Many graphics objects such as
text characters and hollow shapes have interior portions. These interiors will be
drawn with the color specified by the backColor field. If this color is set to
eTransparent, the interior pixels are treated as transparent and are not changed.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 3 -8

3.3.1.5 mmlGC::nClutAlpha
uint32 nClutAlpha

The number of indices in a palette that will be used to draw a line or ellipse in color
lookup table mode. This is used if the pixel format of the destination pixmap is
eClut4 or eClut8. This is equivalent to the number of gradations of a color that will
be used by the drawing routine.

3.3.1.6 mmlGC::clutForeIndex
uint32 clutForeIndex

Serves the same function as the foreColor field when the destination pixmap has a
pixel format of eClut4 or eClut8.

3.3.1.7 mmlGC::clutBackIndex
uint32 clutBackIndex

Serves the same function as the backColor field when the destination pixmap has a
pixel format of eClut4 or eClut8.

3.3.1.8 mmlGC::fixAspect
ebool fixAspect

fixAspect
value

Description

eFalse Causes copying to be done in true display pixels. But the
width to height ratio of these pixels is 8:9, so a square
drawn as 9 pixels by 9 pixels will appear to the viewer as a
rectangle.

eTrue Causes copying to be done in square pixels. The edge of
each of these pixels has a length of one scan line height.
So a square drawn as 8x8 will occupy a rectangle 9 pixels
wide by 8 pixels high, which will appear to the viewer as
square.

3.3.1.9 mmlGC::defaultLS
m2dLineStyle defaultLS

Provides the default line style used in line drawing functions. The application may
override this default by using the m2dDrawStyled2Dline function.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 3 -9

3.3.1.10 mmlGC::defaultES
m2dEllipseStyle defaultES

Provides the default ellipse style used by the functions m2dDrawEllipse and
m2dDrawQuadArc. The application may override this default by using the
m2dDrawStyled**** functions.

3.3.1.11 mmlGC::disCopyBlend
uint32 disCopyBlend

Controls blending when using the m2dCopyRectDis function. If set to 0, the copy is a
simple source copy. If set to 1, the source will be blended with the destination pixels
using the 8 bit alpha value of each source pixel. This only happens if the source pixel
format is e888Alpha.

3.3.1.12 mmlGC::textBase
uint32 textBase

When the textMix parameter of a text output function is set to eClutAlpha, the
textBase field of the graphics context contains the CLUT index used for the most
translucent text pixels. All text pixel values are added to textBase to obtain the
index used in the CLUT.

3.3.1.13 mmlGC::textDiv
uint32 textDiv

Text pixel values normally range between 0 and 63 from most transparent to most
opaque. When the textMix parameter of a text output function is set to eClutAlpha,
the text pixel values are divided by textDiv and then added to textBase to get an
index into the CLUT. Satisfactory text can generally be obtained using only 4 or 8
CLUT entries, so typical values of textDiv would be 16 or 8.

3.3.1.14 mmlGC::textMin
uint32 textMin

When the textMix parameter of a text output function is set to eClutAlpha, the
CLUT index used when text is drawn is clipped to a minimum value specified by
textMin.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 3 -10

3.3.1.15 mmlGC::textMax
uint32 textMax

When the textMix parameter of a text output function is set to eClutAlpha, the
CLUT index used when text is drawn is clipped to a maximum value specified by
textMax.

3.3.1.16 mmlGC::translucentText
uint32 translucentText

Normally set to 0. Set to 1 if text is to be displayed that is translucent with respect to
the underlying video plane. This provides proper alpha channel antialiasing when the
foreground and/or background colors are translucent.

3.3.1.17 mmlGC::textWidthScale
F16Dot16 textWidthScale

Represents the ratio of the width of characters to the height. A value of 0x10000
(default value of 1.0) provides the aspect ratio intended by the type designer,
presuming square pixels on the output device.

Different values can be used to create condensed or expanded text, or to compensate
for non-square pixels on the output device.

3.3.1.18 mmlGC::transparentOverlay
eBool transparentOverlay

If set to eTrue, copy functions can create transparent pixels in the overlay plane. See
the description of the copy functions.

3.3.1.19 mmlGC::transparentSource
eBool transparentSource

If set to eTrue, copy functions will not copy designated pixels to the target display
pixmap. See the description of the copy functions.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 3 -11

3.3.1.20 mmlGC:: rgbTransparentValue
int rgbTransparentValue

A 15 bit RGB color that will be treated as transparent or non-copying if the
transparentOverlay or transparentSource flags are set to eTrue. See the
description of the copy functions.

3.4 Bitmap Definitions
The basic bitmap definition used by NUON is known as a pixmap.

The mmlPixmap structure defines all of the attributes of a bitmapped image on
NUON. There are two other types which should be considered as subclasses:
mmlAppPixmap and mmlDisplayPixmap.

Within the MML2D.H include file, you’ll find that the definitions for mmlPixmap,
mmlAppPixmap, and mmlDisplayPixmap are essentially identical. This is because
the main difference between these types is not something that can be specified as part
of a structure definition.

The difference between an mmlAppPixmap and an mmlDisplayPixmap is simply
where the corresponding bitmap is located in memory. This is a very important
distinction, however, because it affects what hardware operations may be performed
on the bitmap.

It would have been possible to use the basic mmlPixmap type for all bitmap
descriptions, but this would have required many library functions, and likely your
own application code, to include a lot of additional code to determine and/or verify
the type of bitmap being passed as a parameter.

By using separate type definitions for each type of bitmap, we gain the ability to do
compile-time error checking. We allow the library, or your application’s own code,
to specify to the C/C++ compiler that a particular function expects a specific type of
bitmap. This way, for example, if you pass the mmlSimpleVideoSetup function a
pointer to an mmlAppPixmap when it expects an mmlDisplayPixmap, the compiler
can throw out an error message.

3.4.1 mmlPixmap
The mmlPixmap structure is a generic bitmap description. The bitmap described is
also either an mmlAppPixmap or mmlDisplayPixmap (but not both at once).

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 3 -12

There are times when a function is capable of dealing with either type of bitmap. In
those cases, the more generic mmlPixmap type may be used in place of one of the
more specific types.

3.4.2 mmlAppPixmap
The mmlAppPixmap structure defines an application pixmap. Application pixmaps
are always located in system RAM and can be addressed directly (through the cache)
via *(pixmapP->memP) or by using Other Bus DMA.

Application pixmaps are laid out in a traditional raster fashion, and therefore may be
easily manipulated directly by an application. However, they cannot be directly
displayed by the NUON’s video display hardware or used for bilinear DMA
transfers.

A major purpose of an application pixmap is to act as a source for a block-transfer to
a display pixmap.

3.4.3 mmlDisplayPixmaps
The mmlDisplayPixmap structure defines a display pixmap. Display pixmap
memory must be allocated in Merlin SDRAM. They may be accessed via Main Bus
DMA or used as framebuffers for the NUON’s video hardware.

If you attempt to access a display pixmap directly (through the cache) via
*(pixmapP->memP), you will not get sensible results because the memory layout
does not follow a traditional raster format. The format used is designed for efficient
access by the DMA and video display hardware. The layout is sufficiently
convoluted that it cannot be efficiently addressed directly via software.

Instead of accessing the pixmap memory directly, applications must use DMA. The
NUON’s Main Bus DMA system has special pixel-mode access functions for
accessing arbitrary pixels or rectangular regions of a display pixmap.

3.5 Command Sequences

3.5.1 mmlSequence
An mmlSequence object describes a list of drawing operations that can be executed
as a single command, and executed repeatedly as needed. See chapter 13 for more
information.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 3 -13

This page intentionally left blank.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 4 -1

4. General Media Library Functions

4.1 Pixmap Initializers and Attribute Setting
Different data types are used for the two subclasses of pixmap, so that compilers can
do type checking in the functions that only accept one of the subclasses as a
parameter; for example:

ScaledCopyRect(mmlAppPixmap* srcP, mmlDisplayPixmap* destP, ...)

Any pixmap may be correctly passed to a function that specifies mmlPixmap as a
parameter by casting the subclass to the superclass, e.g.

mmlAppPixmap map1;
mmlInitAppPixmaps(&map1, 640, 480, NULL, e8Clut, 1);
mmlSetPixMapClut((mmlPixmap*)&map1, clutPtr);

The pixmap initializers allow the programmer to either specify an already allocated
area of memory to be used for the pixmap memory, or to have the initializer function
allocate the memory. If the memory is automatically allocated, the programmer
should call ReleasePixmaps to free the memory when the pixmap is no longer used.
Provision is made for initializing an array of pixmaps of the same type with a single
call. When the pixel type is e655Z, this actually results in memory being allocated
for a Z buffer that is shared by the color buffers. In this case, the programmer must
make sure to Release the array of pixmaps with a single ReleasePixmaps call that
points to the first pixmap in the array.

Warnings — It is illegal to attempt to initialize a Display Pixmap with an address that
is not in Merlin SDRAM. However, it is possible to initialize an Application Pixmap
with an SDRAM address. If the application code can be guaranteed to always run on
NUON (never on the host side of combination Host-Merlin platforms), then the
SDRAM Application pixmap can be addressed directly via *(PixmapP->memP),
but it is considered poor practice to create such non portable code.

4.1.1 mmlInitAppPixmaps
mmlStatus mmlInitAppPixmaps(mmlAppPixmap* sP, mmlSysResources* srP,
int wide, int high, mmlPixFormat pixFormat, int numBuffers, void* memP);

Creates an array of one or more appPixmap objects of dimensions wide * high pixels,
using the specified pixFormat.

pixFormat must be one of the following enumerated values:

pixFormat value Description

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 4 -2

pixFormat value Description
eClut4 4 bits per pixel with color lookup. Values are indices into

a table of 16 YCC values each in e888Alpha format.
eClut8 8 bits per pixel with color lookup. Values are indices into

a table of 256 YCC values each in e888Alpha format.
e655 16 bits per pixel, with 6 bits for the Y channel, and 5 bits

for each of Cr and Cb.
e888Alpha 32 bits per pixel, with 8 bits for each of Y, Cr, and Cb

and 8 bits for alpha.
e655Z 32 bits per pixel, 16 for YCrCb color and 16 for Z buffer

depth.
e888AlphaZ 64 bits per pixel, 24 for YCrCb color, 8 for alpha, and 32

for Z depth.
eRGBAlpha1555 16 bits per pixel, 1 bit alpha, 5 each for R, G, and B

components
eRGB0555 16 bits per pixel, most significant bit is 0, 5 each for R,

G, and B components.

numBuffers can be 1, 2, or 3. This specifies the number of pixmaps that will be
initialized.. Generally, only 1 application pixmap will be initialized with this call.

4.1.2 mmlInitDisplayPixmaps
mmlStatus mmlInitDisplayPixmaps(mmlDisplayPixmap* sP,
mmlSysResources* srP, int wide, int high , mmlPixFormat pix, int numBuffers,
void* memP);

Initializes an array of one or more displayPixmap objects of dimensions wide * high
pixels, using the specified pixFormat.

pixFormat must be one of the YCC formats in the previous table. If the pixmap will
be displayed in the main video channel rather than the graphics overlay channel, the
pixFormat can not be eClut4 or eClut8.

Wide must be a multiple of 8 pixels. For format eClut8, wide must be a multiple of
16 pixels, and for format eClut4, wide must be a multiple of 32 pixels.

numBuffers can be 1, 2, or 3, and has special meaning when used with pixFormat
e655Z. In this format, multiple buffers share a common Z buffer, so it is possible
while Buffer A is being displayed to do Z rendering into Buffer B, clear the Z buffer
and start rendering into Buffer C. When Buffer A has finished displaying, Buffer B
can start displaying. Because the Z buffer is shared, it is not possible to separately do
Z buffering into two buffers at the same time.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 4 -3

4.1.3 mmlReleasePixmaps
void mmlReleasePixmaps(mmlPixmap* sP, mmlSysResources* srP);

Release an array of one or more previously initialized pixmaps. If an array of
pixmaps was initialized by a single call, they should be released by a single call.

4.1.4 mmlSetPixmapClut
void mmlSetPixmapClut(mmlPixmap* sP, mmlColor* clutPtr);

Set the color lookup table used by a pixmap to the table pointed at by clutPtr. A
color lookup table is simply an array of 256 mmlColor values. It should be aligned
on a 1024 byte boundary.

* In previous versions, this function has been called mmlSetClut.

4.2 Other Initialization

4.2.1 mmlPowerUpGraphics
void mmlPowerUpGraphics(mmlSysResources* sysResPtr)

This function should be called at the beginning of every application, to initialize the
sysRes object.

4.2.2 mmlInitGC
void mmlInitGC(mmlGC* gcPtr, mmlSysResources* sysResPtr)

This function should be called at the beginning of every application, following the
mmlPowerUpGraphics call. It sets default values for the graphics context that can
then be changed by the application program.

4.2.3 mmlSimpleVideoSetup
void mmlSimpleVideoSetup(mmlDisplayPixmap* sp, mmlSysResources* srP,
mmlVideoFilter filttype);

In the current version of the mmlibrary, this function can be used to initalize a video
function that will cause the displayPixmap to be displayed. It can only be used for a
single pixmap.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 4 -4

The filttype parameter can be one of eNoVideoFilter, eTwoTapVideoFilter, or
eFourTapVideoFilter. The two tap filter will generally provide adequate anti-
flicker filtering for interlaced TV.

4.2.4 mmlInitFontContext
mmlInitFontContext(mmlGC gcPtr, mmlSysResources* srP, mmlFontContext*
fcPtr, int cacheSize);

This function should be called at the beginning of every application that uses fonts,
following the mmlInitGraphicsContext call. It sets default values for the font
context that can then be changed by the application program. The cacheSize
parameter limits the amount of memory that will be allocated for storing cached
glyph pixmaps.

4.2.5 m2dSetPoint
m2dPoint m2dSetPoint(uint16 x, uint16 y);

Returns an m2dPoint structure with components x and y.

4.2.6 m2dSetRect
m2dRect* m2dSetRect(m2dRect* rP, uint16 left, uint16 top, uint16 right, uint16
bottom);

Returns a pointer to an initialized m2dRect structure with components describing the
left top point of the rectangle and the right bottom point of the rectangle.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 5 -1

5. Color Allocation and Manipulation

The MML library has functions to construct an abstract color (type mmlColor) from
three components, either RGB or YCrCb, with each component expressed either in
the integer range 0 to 255 or in the floating point range 0.0 to 1.0, depending on the
function. With one exception, the functions that return an mmlColor make sure that
the color is valid and safe. A valid color is one that conforms to Rec. ITU-R BT.601,
the international standard for digital video. This standard limits the range of the luma
and chroma components to a range somewhat less than the full dynamic range of their
numeric representations:

16 <= Y <= 235
16 <= Cr <= 240
16 <= Cb <= 240

A safe color is one that can be correctly displayed on an NTSC or PAL composite
video device such as a television. Even when restricted to the Rec. ITU-R BT.601
limits, not all component triples generate colors that can be displayed on the NUON
video device. In particular, the gamut of colors displayable on a composite video
monitor (NTSC or PAL) is restricted by requirements on the strength of the
luminance and chrominance signals: the sum of the two signals cannot be too large
or too small, or the monitor will be unable to show it. Some older monitors and TV
receivers can even lose sync if the color signal is a supersaturated blue. The
restrictions on colors shown on S-video or component video monitors are much less
stringent. Therefore a color that is safe for NTSC or PAL composite video is also
safe for S-video and component video.

When the arguments to a color-generating function produce a color that is unsafe, the
function modifies it: the luminance and hue are preserved, but the color is de-
saturated by effectively adding white to it. The advanced user can control how unsafe
colors are modified through the mmlSafeColorLimits() function.

5.1.1 mmlColorFromRGB
mmlColor mmlColorFromRGB(uint8 red, uint8 green, uint8 blue)

Creates a color based upon an RGB specification. The red, green, and blue
arguments each can be in the range 0 to 255. Values less than 0 will be forced to 0;
values greater than 255 will be forced to 255. The control component of the return
value is zero.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 5 -2

5.1.2 mmlColorFromYCC
mmlColor mmlColorFromYCC(uint8 Y, uint8 Cr, uint8 Cb)

Creates a color based upon a YCrCb specification. The Y, Cr, and Cb arguments can
each be in the range 0 to 255. Cr and Cb values of 128 correspond to neutral.
Values less than 0 will be forced to 0; values greater than 255 will be forced to 255.
The control component of the return value is zero.

NOTE: This function simply packages the specified component values into a
mmlColor type and returns it. It does not force the component arguments to lie
within the ranges imposed by Rec. ITU-R BT.601. Nor does it restrict the resulting
color to be safe for composite video display. This function is the only exception: all
other color-producing functions in the library return valid and safe colors. To insure a
valid and safe color, pass the result to the function mmlSafeColor().

5.1.3 mmlGetYCCComponents
void mmlGetYCCComponents(mmlColor col, uint8 *Y, uint8 *Cr, uint8 *Cb)

Deconstructs the YCrCb representation of the abstract color col. Argument col does
not have to be a safe color.

5.1.4 mmlColorFromYCCf
mmlColor mmlColorFromYCCf(double Y, double Cr, double Cb)

Creates a color based upon a YCrCb specification. Luminance argument Y must be in
the range 0.0 to 1.0. Chrominance arguments Cr and Cb must each lie in the range -
0.5 to 0.5. Values outside these limits are forced to the nearest limit. The control
component of the return value is zero.

5.1.5 mmlGetYCCFloatComponents
void mmlGetYCCFloatComponents(mmlColor col, double *Y, double *Cr,
 double *Cb)

Extracts floating point YCC components from the mmlColor value specified by the
col parameter. Argument col does not have to be a safe color.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 5 -3

5.1.6 mmlGetYCCComponents
void mmlGetYCCComponents(mmlColor col, uint8 *Y, uint8 *Cr, uint8 *Cb)

Extracts YCC components from the mmlColor value specified by the col parameter.
Argument col does not have to be a safe color.

5.1.7 mmlColorFromRGBf
mmlColor mmlColorFromRGBf(double rf, double gf, double bf)

Creates a color based upon a floating point RGB specification. Arguments rf, gf, and
bf must each lie in the range 0.0 to 1.0. Values outside these limits are forced to the
nearest limit. The control component of the return value is zero.

5.1.8 mmlGetRGBFloatComponents
void mmlGetRGBFloatComponents(mmlColor col, double *rf, double *gf,
double *bf)

Extracts floating point RGB components from the mmlColor value specified by the
col parameter. Argument col does not have to be a safe color.

5.1.9 mmlGetRGBComponents
void mmlGetRGBComponents(mmlColor col, uint8 *rf, uint8 *gf, uint8 *bf)

Extracts RGB components from the mmlColor value specified by the col parameter.
Argument col does not have to be a safe color.

5.1.10 mmlSafeColor
mmlColor mmlSafeColor (mmlColor col)

Converts abstract color col into a valid and safe color for the platform’s display. The
8-bit color or alpha component is returned unchanged.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 5 -4

5.1.11 mmlSafeColorLimits
int mmlSafeColorLimits (int select)

Chooses the set of limits that are applied to modify unsafe colors into safe colors.
Argument select can be any of the values shown in the following table.

select Meaning
eSafeColorDefault Use the default color limits as specified by the platform.
eSafeColorNTSC Use color limits appropriate for NTSC with a 7.5

percent setup.
eSafeColorNTSCZero Use color limits appropriate for NTSC with zero setup
eSafeColorPAL Use color limits appropriate for PAL (no setup).
eSafeColorCustom Use the custom set of limits as most recently set by a

call to mmlCustomSafeColorLimits() (see below).
eSafeColorDisable Disable the conversion of unsafe colors into safe colors.

However, colors are still modified to be valid.

The function returns 1 if the argument is valid or 0 if the argument is not valid.

5.1.12 mmlCustomSafeColorLimits
int mmlCustomSafeColorLimits (double ped, double smax, double smin,

 double cmax)

The library provides built-in safe-color limits that are suitable for almost every
application. But it also provides the means for the adventurous and knowledgeable
designer to supply custom limits.

The function’s four arguments set the color limits, as described below. All four
arguments are expressed in IRE units.

ped Specifies the setup or pedestal. This value is usually 0.0 or 7.5 for NTSC
and 0.0 for PAL, but it can be anything. The default is 7.5 for NTSC and
0.0 for PAL.

smax Specifies the maximum allowed value for the composite video signal Y+C.
If the composite signal exceeds smax, then the chroma C is reduced so that
the limit is satisfied. The default value is 110 IRE for both NTSC and PAL.

smin Specifies the minimum allowed value for the composite video signal Y–C.
If the composite signal falls below smin, then the chroma C is reduced so
that the limit is satisfied. The default value is –15 IRE for both NTSC and
PAL.

cmax Specifies the maximum amplitude permitted for the chroma excursion.
That is, if the chroma is greater than cmax, then it is reduced to cmax. The

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 5 -5

default value is 50 IRE for both NTSC and PAL.

The function not only sets new custom safe-color limits, it also selects
eSafeColorCustom as the current limit set. It returns 1 if the arguments are valid, or
0 otherwise.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 5 -6

This page intentionally left blank.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 6 -1

6. Copy Functions

The MML copy functions provide fast copying of rectangular regions within the
same pixmap or between pixmaps. Source and destination images can be combined
with alpha blending.

6.1.1 m2dReadPixels
void m2dReadPixels(mmlGC *gc, uint32 *buffer, mmlDisplayPixmap *srcPtr, int
x, int y, int num, eBool verticalQ)

Reads a line of up to 64 pixels from the display pixmap beginning at the coordinates
(x,y). If verticalQ is true, it reads a vertical line, else a horizontal line. The pixels
are packed into the specified buffer as raw data. 16-bit pixels are packed 2 per long,
8-bit pixels are packed 4 per long, and so on. The buffer must have been allocated
large enough to receive the data. The num argument specifies the number of pixels to
be transferred and must be no greater than 64. No bounds checking is done. For 16
bit pixels, num must be a multiple of 2. For 8 bit pixels, num must be a multiple of 4.
For 8 bit pixels, if a vertical line is read, it will be 2 pixels wide, and num/2 pixels
high.

Not implemented for 4 bit pixels.

6.1.2 m2dWritePixels
void m2dWritePixels(mmlGC *gc, uint32 *buffer, mmlDisplayPixmap *srcPtr,
int x, int y, int num, eBool verticalQ)

Writes a line of up to 64 pixels from the specified buffer into the display pixmap
beginning at the coordinates (x,y). If verticalQ is true, it writes a vertical line, else a
horizontal line. The pixels are packed into the buffer as raw data. 16-bit pixels are
packed 8 per long, 8-bit pixels are packed 4 per long, and so on. The num argument
specifies the number of pixels to be transferred and must be no greater than 64. The
line of pixels must fit within the pixmap boundaries. No bounds checking is done.
For 16 bit pixels, num must be a multiple of 2. For 8 bit pixels, num must be a
multiple of 4. For 8 bit pixels, if a vertical line is written, it will be 2 pixels wide,
and num/2 pixels high.

Not implemented for 4 bit pixels.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 6 -2

6.1.3 m2dCopyRect
void m2dCopyRect(mmlGC *gc, mmlAppPixmap *srcPtr, mmlDisplayPixmap
dstPtr, m2dRect rPtr, m2dPoint destLocation)

Copies a rectangle from a source mmlAppPixmap to a rectangle in a destination
mmlDisplayPixmap. The m2dPoint destLocation provides the left and top
coordinates of the destination rectangle. If the source and destination use different
color spaces, or pixel formats, conversion will be done. If the mmlGC field
fixAspect is set to eTrue, horizontal aspect ratio scaling of 8:9 is done during the
copy. The destination rectangle must be wide enough to contain the extra pixels.

RESTRICTION: The destination pixmap can not have the eClut4 or eClut8
pixelFormat..

6.1.4 m2dCopyClutRect
void m2dCopyClutRect(mmlGC* gcP, mmlPixmap* srcP,
 mmlDisplayPixmap* destP, m2dRect* rP,
 m2dPoint pt);

Copies a rectangle from a source clut-based mmlPixmap to a rectangle in a clut-
based destination mmlDisplayPixmap. The m2dPoint destLocation provides the left
and top coordinates of the destination rectangle. The source pixmap may be either an
mmlAppPixmap or an mmlDisplayPixmap. The rectangle edges and destination
coordiates may be on any pixel boundary.

RESTRICTION: Both pixmaps must have the format eClut8. No scaling is done.

6.1.5 m2dCopyRectScaled
void m2dCopyRectScaled(mmlGC *gc, mmlAppPixmap *srcPtr,
mmlDisplayPixmap *dstPtr, m2dRect* srcRecPtr, m2dRect* destRecPtr, int
horNum, int horDen, int verNum, int verDen)

Scales and copies a rectangle from a source mmlAppPixmap to a rectangle in a
destination mmlDisplayPixmap. The m2dRect destRect provides the left and top
coordinates of the destination rectangle. If the source and destination use different
color spaces, or pixel formats, conversion will be done. The horizontal scaling
factor is horNum/horDen and the vertical scaling factor is verNum/verDen. The
mmlGC field fixAspect is ignored. The right and bottom of the scaled rectangle are
clipped to the destination rectangle.

RESTRICTION: The destination pixmap cannot have the eClut4 or eClut8
pixelFormat.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 6 -3

6.1.6 m2dCopyRectFast
void m2dCopyRectFast(mmlGC *gc, mmlAppPixmap *srcPtr,
mmlDisplayPixmap *dstPtr, m2dRect* rPtr, m2dPoint destLocation)

Copies a rectangle from a source mmlAppPixmap to a rectangle in a destination
mmlDisplayPixmap. The m2dPoint destLocation provides the left and top
coordinates of the destination rectangle. This is the fastest form of copyRect (more
than 10 times faster in some circumstances), but it has many restrictions. No color
conversion is done, and no scaling or aspect-ratio conversion is done.

Restrictions: The pixel formats of the source pixmap and the destination pixmap
must be the same, except it is allowable for the source pixmap format to be
e888Alpha while the destination format is e655. (The formats must be YCrCb
formats, not RGB). The source rectangle must be complete, it can not be NULL.
The left edge of the source rectangle must be on an even byte (automatically true
except for eClut8 format). The width of the rectangle must be a multiple of 4 bytes
(always true for e888Alpha format, but e655 formats must have a width that is an
even number of pixels, and eClut8 formats must have a width that is a multiple of 4
pixels. The left edge of the destination point must be aligned on a multiple of 4 bytes
(always true for e888Alpha format, but e655 format destinations must have an even x
value, and eClut8 format destinations must be a multiple of 4 pixels.

6.1.6.1 Transparent Pixels in Graphics Overlay Plane
Unscaled copies from an application pixmap to a display pixmap that will be
displayed in the Graphics Overlay plane can designate transparent pixels.
Transparent pixels allow the underlying video plane to be seen rather than the
overlay pixel. The value of the overlay pixel is completely ignored. If the pixel
format of the display pixmap is e655 or e888Alpha and the graphics context value
transparentOverlay is set to eTrue, then transparent pixels are specified as follows.

Source format is eRGBAlpha1555

If the application pixmap format is eRGBAlpha1555, any pixel with the most
significant bit set to 1, will be translated into a transparent pixel. Other pixels will be
converted to YCrCb values and displayed as opaque pixels.

Source format is eRGB0555

If the application pixmap format is eRGB0555, any pixel whose rgb value is equal to
the graphics context value rgbTransparentValue will be translated into a transparent
pixel. Other pixels will be converted to YCrCb values and displayed as opaque
pixels. rgbTransparentValue must be a 15 bit value, i.e. the MSB must be 0.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 6 -4

Source format is e888Alpha

If the application pixel format is e888Alpha and the overlay display pixmap format
is e655, any pixel with an alpha value of 0xFF will be translated into a transparent
pixel. Other pixels will be truncated from 888YCC to 655YCC and displayed as
opaque pixels. *Not implemented in version 2.0

If the application pixel format is e888Alpha and the overlay display pixmap format
is also e888Alpha, the transparentOverlay flag is ignored. Pixels are copied directly,
and the alpha value governs the opacity of the overlay plane pixels; alpha values of
0xFF are completely transparent to the underlying Video plane, and alpha values of 0
are completely opaque.

When the overlay display pixmap format is e655 or e888Alpha, any pixel with a
value of 0 will be completely transparent to the video plane. When the display
format is e655, this means that any e888Alpha pixel with a value between (0,0,0) and
(3,7,7) will automatically become a transparent pixel regardless of the alpha value.
When these pixels are copied to a display pixmap with e888Alpha format, pixels
with a value of 0,0,0 will still be transparent, but other small values will have a green
color.

Note that RGB values never translate to a 0,0,0 YCC value, so no RGB pixel is ever
accidentally translated into a transparent pixel.

Restrictions: Transparent overlay pixels require: the copy must be unscaled; the
display pixmap format must be e888Alpha or e655; the display pixmap must be
displayed in the Graphics Overlay plane; and the graphics context value
transparentOverlay must be set to eTrue;

6.1.6.2 Pixels That Do Not Transfer
When the transparentOverlay flag is false, a different form of copy transparency is
available. Unscaled copies from an application pixmap to a display pixmap with
pixel format e655 or e888Alpha, can designate pixels that will not be copied. The
target pixmap is left unchanged for these pixels. This mode can be used for display
pixmaps that are displayed in either the graphics overlay plane, or the main video
plane. If the graphics context value transparentSource is set to eTrue, non-copying
pixels are designated as follows:

Source format is eRGBAlpha1555

If the application pixmap format is eRGBAlpha1555, any pixel with the most
significant bit set to 1, will not be copied. Other pixels will be converted to YcrCb
values and copied to the display pixmap.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 6 -5

Source format is eRGB0555

If the application pixmap format is eRGB0555, any pixel whose rgb value is equal to
the graphics context value rgbTransparentValue will not be copied. Other pixels will
be converted to YcrCb values and copied to the display pixmap.

rgbTransparentValue must be a 15 bit value, i.e. the msb must be 0. *Not
implemented in version 2.0

Source format is e888Alpha

If the transparentOverlay value is eFalse and the transparentSource value is set to
eTrue, then pixels with an alpha value of 0xFF will not be copied.

Restrictions: Transparent source pixels require: the copy must be unscaled; the
display pixmap format must be e888Alpha or e655; the graphics context value
transparentOverlay must be set to eFalse, and the graphics context value
transparentSource must be set to eTrue.

6.1.7 m2dCopyRectDis
void m2dCopyRectDis(mmlGC *gc, mmlDisplayPixmap *srcPtr,
mmlDisplayPixmap *dstPtr, m2dRect* rPtr, m2dPoint destLocation)

Copies a rectangle from a source mmlDisplayPixmap to a rectangle in a destination
mmlDisplayPixmap. The m2dPoint destLocation provides the left and top
coordinates of the destination rectangle.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 6 -6

This page intentionally left blank.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 7 -1

7. Fill Functions

7.1.1 m2dDrawPoint
void m2dDrawPoint(mmlGC *gc, mmlDisplayPixmap *V, int x, int y, mmlColor
color)

Draws a single point at coordinates (x, y) in a mmlDisplayPixmap V, using the
specified color. The pixmap must use 16 bit or 32 bit pixels. The alpha component
of the color will be copied if the mmlDisplayPixmap uses 32 bit pixels. NOTE:
This is actually implemented as a macro and will always be the fastest
implementation for plotting a single point in a display pixmap.

7.1.2 m2dSmallFill
void m2dSmallFill(mmlGC *gc, mmlDisplayPixmap *V, int x, int y, mmlColor
color, int xLen, int yLen)

Fills a small rectangle with a solid color. The pixmap must use 16 bit or 32 bit pixels.
The alpha component of the color is ignored. The dimensions of the rectangle are
given by xLen and yLen, and the product xLen * yLen must be no greater than 64
pixels. NOTE: This is actually implemented as a macro and will always be the
fastest implementation for filling a small line or rectangle in a display pixmap.

7.1.3 m2dFillColor
mmlColor m2DFillColor(mmlGC* gcP, mmlDisplayPixmap* V,
 m2dRect* rP, mmlColor color)

Fill a rectangle in a mmlDisplayPixmap with a color. The rectangle must be within
the bounds of the pixmap. This function can be used to plot individual points and to
draw horizontal and vertical lines.

The m2dFillClut function should be used for clut-based pixmaps.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 7 -2

7.1.4 m2dFillClut
void m2dFillClut(mmlGC* gcP, mmlDisplayPixmap* destP,
 m2dRect* rP, mmlColor color);

Fill a rectangle in a clut based mmlDisplayPixmap with a color index. The rectangle
must be within the bounds of the pixmap. This function can be used to plot individual
points and to draw horizontal and vertical lines.

The rectangle edges can be on any pixel boundary. The color used as a fill is not an
mmlColor, but is an index into the CLUT. In this case, color should be of the form:

(index<<24) | (index<<16) | (index<<8) | index

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 8 -1

8. Line Draw Functions

8.1.1 m2dInitLineStyle
void m2dInitLineStyle(mmlGC* gcP, m2dLineStyle* lineS, mmlColor color,
int32 thick, int32 alpha,m2dLineKind lineKind)

Call to initialize a m2dLineStyle object with a specific color, thickness, alpha, and
line type value. The m2dLineStyle structure is described in detail in section 3.2.2.

8.1.2 m2dDrawLine
void m2dDrawLine(mmlGC *gc, mmlDisplayPixmap *V, int startx, int starty,
 int endx, int endy)

Draws a line from coordinates (startx,starty) to (endx,endy) inclusive. The line
thickness, color, drawing mode, z comparison mode, alpha value (if applicable), and
z value (if applicable) are all taken from the graphics context gc. The default line
type is eLine3 which is anti-aliased.

NOTE: Any of the fields in the gc->defaultLS object can be explicitly changed. This
will remain the setting for future line drawing until the value is again changed..

8.1.3 m2dDrawStyledLine
void m2dDrawStyledLine(mmlGC *gc, mmlDisplayPixmap *V,
 mmlLineStyle *stylePtr, int startx, int starty,
 int endx, int endy)

Draws a line from coordinates (startx,starty) to (endx,endy) inclusive. The line
thickness, color, and other style properties are taken from the mmlLineStyle object.
These properties override the properties in gc->defaultLS, but do not replace them.

8.1.4 m2dDrawPolyLine
void m2dDrawPolyLine(mmlGC *gcP, mmlDisplayPixmap *destP,
 int32 xc, int32 yc, f24Dot8 xscale, f24Dot8 yscale,
 int32 angle, int32* pPtsLst)

Draws a closed set of lines, each beginning where the last ends, and with a line from
the last point to the first point. The pointer ptlist points to this many points.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 8 -2

Parameters such as the line type, thickness of the lines, color, z comparison mode (if
applicable), alpha value (if applicable), z value (if applicable), etc., are taken from
the graphics context gcP.

The parameters are:

int32 xc — The x-coordinate of the center of the polygon. This only uses the lower
16 bits of int32. It accepts negative values.

int32 yc — The y-coordinate of the center of the polygon. This only uses the lower
16 bits of int32. It accepts negative values.

f24Dot8 xscale — The x scaling factor of the polygon. This is in 8.8 format (i.e., the
maximum value is 0x7FFF).

f24Dot8 yscale — The y scaling factor of the polygon. This is in 8.8 format (i.e., the
maximum value is 0x7FFF).

int32 angle — This is the number of clockwise rotations (full or fractional) in 16.16
format. It accepts negative values.

int32* pPtsLst — This is a pointer to an array of points. Each point contains the y-
coordinate in the upper 16 bits and the x-coordinate in the lower 16 bits. For
example the point 0x000f000a would represent a point with an x-coordinate of 15
and a y-coordinate of 10. Each point-coordinate is added to the corresponding
center-coordinate (xc or yc); and multiplied by the corresponding scaling factor
(xscale or yscale).

The following escape codes can be freely intermingled with the list of points to either
change the line characteristics or break the polygon continuity. Please note that all
references to fields from the m2dLineStyle structure refer to gcP->defaultLS.

Escape Code Description
0x80000000 Change the line width of the next line segments using the

value of the next entry in the list. This escape code has the
side effect of generating a break in the polyline for all line
types (eLine1 to eLine6, inclusive).

0x80000001 Terminate the polyline. This should always be the last entry
in the list of points.

0x80000002 Do not connect the previous point to the next point.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 8 -3

Escape Code Description
0x80000003 Set foreColor using the value of the next entry in the list.

NOTE: If the current line type is set to eLine6, then the value
in colorBlend1 also has to be set. (See section 3.2.2) For
example, if the new color value is 0xA28E2C00 and
colorBlend1 is 0x3F, then the value foreColor is
0xA28E2C3F.

For eLine3clut and eLine7clut, the color index should be in
the format 0xnn00, effectively leaving the first byte empty.
For example, a color index of 0x81 should be entered as
0x8100.

0x80000004 Set foreColor2 using the value of the next entry in the list,
and set foreColor using the value after the next entry in the
list (after the value used by foreColor2).

NOTE: If the current line type is set to eLine6, then the value
in colorBlend1 also has to be set. (See section 3.2.2) For
example, if the new color value is 0xA28E2C00 and
colorBlend1 is 0x3F, then the foreColor is 0xA28E2C3F. The
same applies to foreColor2.

For eLine3clut and eLine7clut, the color index should be in
the format 0xnn00, effectively leaving the first byte empty.
For example, a color index of 0x81 should be entered as
0x8100. This applies to foreColor and foreColor2. The
indices between foreColor and foreColor2 will be used as
pixel values, between the 2 endpoints. In other words,
foreColor and foreColor2 will be used as the minimum and
maximum of a range of color indices. The value of foreColor
can be less than or greater than foreColor2.

0x80000005 Change the alpha value using the value of the next entry in the
list. This escape code has the side effect of generating a
break in the polyline for all line types (eLine1 to eLine6,
inclusive). However, the alpha value will only be used by
eLine3, eLine5 and eLine6.

In order to draw a closed polygon, the first polygon point should also be the last
polygon point in the list. The following array is an example of a closed polygon in a
C-language program:

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 8 -4

int LineList[] =
{

0xff9cff9c,
0xff9c0064,
0x00640064,
0x0064ff9c,
0xff9cff9c,
0x80000001

};

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 9 -1

9. Ellipse Draw Functions

9.1.1 m2dInitEllipseStyle
void m2dInitEllipseStyle(mmlGC* gcP, m2dEllipseStyle* ellipseS,
 f16Dot16 ratio, mmlColor color,
 f24Dot8 xScale, f24Dot8 yScale,
 int alpha, int32 fill)

Call to initialize an m2dEllipseStyle object with a specific border width, color, x/y
eccentricity, alpha, and fill value. The m2dEllipseStyle is described in detail in
section 3.2.3.

9.1.2 m2dDrawEllipse
void m2dDrawEllipse (mmlGC *gc, mmlDisplayPixmap *V,
 int32 xCenter, int32 yCenter, int32 rad)

Draws an ellipse with center at xCenter, yCenter and a radius of rad. The craphics
context gc provides scale factor that combine with rad to provide a circle or an
ellipse. The thickness of the circle, its color, etc. are also provided by the graphics
context gc->defaultES.

Initially, the graphics context has default scale values of 1.0 so that the function
draws circles with the radius rad.

9.1.3 m2dDrawStyledEllipse
void m2dDrawEllipse (mmlGC *gc, mmlDisplayPixmap *V,
 m2dEllipseStyle *stylePtr,
 int32 xCenter, int32 yCenter, int32 rad)

Draws an ellipse with center at xCenter, yCenter and a radius of rad. The eccentricity
factors, color, etc. are taken from the m2dEllipseStyle. These properties override the
properties in gc->defaultES, but do not replace them.

14 -M AR -01 V M LAB S C O N FI D E N TIAL P R O P R I E TAR Y P AG E 9 -2

9.1.4 m2dDrawQuadArc
void m2dDrawQuadArc (mmlGC *gcP, mmlDisplayPixmap *destP,
 int32 xCenter, int32 yCenter,
 int32 rad, int32 quadrant)

Draws a 90-degree arc in a quadrant with center at xCenter, yCenter and a radius of
rad. Quadrants are numbered 1 to 4 in a clockwise direction starting with the bottom
right which is numbered 1 and ending with the top right which is 4.

The thickness of the arc, its color, etc. are provided by gc->defaultES.

9.1.5 m2dDrawStyledQuadArc
void m2dDrawStyledQuadArc (mmlGC *gcP, mmlDisplayPixmap *destP,
 m2dEllipseStyle *stylePtr,
 int32 xCenter, int32 yCenter,
 int32 rad, int32 quadrant)

Draws a 90-degree arc in a quadrant with center at xCenter, yCenter and a radius of
rad. Quadrants are numbered 1 to 4 in a clockwise direction starting with the bottom
right which is numbered 1 and ending with the top right which is 4.

The eccentricity factors, color, etc. are taken from the m2dEllipseStyle. These
properties override the properties in gc->defaultES.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 10 -1

10. Box Functions

10.1.1 m2dInitBox
mmlStatus m2dInitBox(mmlGC *gcP, mmlDisplayPixmap *destP,
 m2dBox* bP,
 int maxWidth, int maxHeight, int maxLineWidth)

Allocates memory for a box object whose maximum dimensions are given by the
parameters. When the box object is no longer needed, the memory should be
released with m2dReleaseBox. Returns eOK, unless memory could not be allocated,
in which case it returns eSysMemAllocFail.

10.1.2 m2dDrawBox
void m2dDrawBox(mmlGC *gcP, mmlDisplayPixmap *destP,
 m2dBox* bP, int width, int height,
 int lineWidth, int left, int top, mmlColor color)

Draw a box in the specified pixmap. All of the properties of the box are provided as
parameters; height, width, linewidth, and color. The position of the top left corner is
also passed as an argument. This is the top left corner of the outside edge of the box.
If the box is already visible on the screen, this function erases the current outline and
draws one with the new arguments.

10.1.3 m2dEraseBox
void m2dEraseBox(mmlGC *gcP, mmlDisplayPixmap *destP, m2dBox* bP)

Erases the outline that currently represents the box. The same box may be later
redrawn at the same position with m2dRedrawBox.

10.1.4 m2dRedrawBox
void m2dRedrawBox(mmlGC *gcP, mmlDisplayPixmap *destP, m2dBox* bP)

Redraw a box that has been previously hidden with m2dEraseBox. It is drawn at the
same position and with the same properties as when it was erased.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 10 -2

10.1.5 m2dReleaseBox
void m2dReleaseBox(m2dBox* bP)

Release the memory allocated for this box object. The box may not be used again
until it is reinitialized with m2dInitBox.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 11 -1

11. Arrow Functions

11.1.1 m2dInitArrow
mmlStatus m2dInitArrow(mmlSysResources* srP, m2dArrow* aP,
 uint32 wide, uint32 high)

Initializes an arrow to have the size wide * high. There are no restrictions on the
dimensions of an arrow. However, SDRAM is generally scarce, so arrows should be
kept small, and the return status should always be checked to see if memory was
successfully allocated.

Returns eOK, unless memory could not be allocated for the arrow. An allocation
failure is reported as eMerMemAllocFail.

11.1.2 m2dSetArrowPixel
void m2dSetArrowPixel(mmlGC* gcP, m2dArrow* aP,
 int x, int y, mmlColor color)

Sets the pixel at coordinates x,y to color. X ranges from 0 to wide-1. Y ranges from 0
to high-1. Coordinate 0,0 is at the top left of the arrow rectangle. The alpha part of
color is respected. A value of 00 in the least significant byte makes the pixel
completely opaque. A value of 0xFF makes the pixel completely transparent.
Intermediate values cause blending with the background pixel.

11.1.3 m2dShowArrow
void m2dShowArrow(mmlGC* gcP, m2dArrow* aP,
 mmlDisplayPixmap* destP, coord left, coord top)

Causes an arrow to be displayed at coordinates left and top in an existing
mmlDisplayPixmap. The part of the pixmap that is covered up is saved so it can be
restored by m2dHideArrow or m2dMoveArrow.

11.1.4 m2dHideArrow
void m2dHideArrow(mmlGC* gcP, m2dArrow* aP)

Hides an existing arrow, by restoring the previously saved image of the screen under
the arrow. Any time an application intends to draw on the pixmap in an area

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 11 -2

overlapping the arrow, the application should first do m2dHideArrow and then
m2dRedrawArrow after updating the pixmap.

11.1.5 m2dRedrawArrow
void m2dRedrawArrow(mmlGC* gcP, m2dArrow* aP)

Redraws a previously hidden arrow at the same position it occupied when it was
hidden.

11.1.6 m2dMoveArrow
void m2dMoveArrow(mmlGC* gcP, m2dArrow* aP, mmlDisplayPixmap*
destP, coord newLeft, coord newTop)

Move an existing arrow from its current location to a new location, possibly in a new
pixmap. The screen under the current location of the arrow is restored to its state
prior to displaying the arrow.

11.1.7 m2dDeleteArrow
void m2dDeleteArrow(mmlSysResources* srP, m2dArrow* aP)

Deletes an arrow object. The video memory in SDRAM used for the arrow image is
released, as is the memory used to save and restore the screen beneath the arrow.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 12 -1

12. Text and Fonts

The Merlin Media Library makes it easy to display richly styled text in any of the
world’s languages.

The basic element of the text API is a textLine. The client can specify the style
properties of any substring of the line of text.

Style properties include typeface, point size, emphasis, weight, text color, anti-
aliasing, translucency, and other optional properties that depend on the chosen
typeface.

Style properties may have enumerated values such as ‘emphasis’ = eNormal or
eItalic; ‘weight’ = eRegular or eBold; or they may have numeric values such as
‘pointsize’ = 12, 13, …; or ‘translucency’ = 0.0, .. 0.5, ..1.0.

The font rendering engine is the T2K type engine from Type Solutions Incorporated.
This engine will render TrueType fonts and fonts in the proprietary T2K format.
Thousands of typefaces can be used in the Merlin Media Library.

A sans serif typeface, specifically intended for use on low resolution displays, is
provided as part of the text system. The name of this font is SysFont. A bold weight
is also provided with the name SysFontBold.

A client can add other fonts by licensing TrueType fonts and adding them to the
registered font list. To save space, TrueType fonts can be converted to the T2K
format by VM Labs or TypeSolutions Inc.

The following functions are provided for manipulating fonts and drawing text:

12.1.1 mmlGetRegisteredFonts
void mmlGetRegisteredFonts(mmlFontContext* fP, mmlFont fonts[],
 int *numFonts)

Call with *numFonts = 0, to learn the number of currently registered typefaces.
numFonts will return the number of registered typefaces. Call with *numFonts = N,
to obtain an array of the first N registered typefaces.

An mmlFont is a font reference structure that is passed to other font manipulation
functions.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 12 -2

12.1.2 mmlAddFont
mmlFont* mmlAddFont(mmlFontContext fc, textCode typefaceName[],
 typeTechnology tech, uint8* fontLocation, int size)

Call to register a new typeface. Specify the memory location of the font and it’s type
technology. Returns an mmlFont reference. For example, to use the system font,
make the call mmlAddFont(fc, “foo”, eT2K, SysFont, SysFontEnd-SysFont);

12.1.3 mmlRemoveFont
void mmlRemoveFont(mmlFontContext fcP, mmlFont font);

Call to remove a registered typeface. Free all the memory associated with this font.

12.1.4 mmlGetFontName
void mmlGetFontName(mmlFont f, textCode** nameP);

Return a string containing the name of a registered font.

12.1.5 mmlSetTextProperties
void mmlSetTextProperties (mmlFontContext fP , mmlFont fontP,
 int pointsize, mmlColor foreColor,
 mmlColor backColor, textMix copyMode,
 int copyFlags, f16Dot16 angle)

Set the properties of the default text style in the font context.

The pointsize parameter is the vertical height (in pixels) of a line of text including the
leading between adjacent lines.

The foreColor parameter is the color of the text.

The backColor parameter is used to color all the non-text pixels in the line if the
copy mode is eSourceCopy.

The copyFlags parameter controls more properties of the text draw. A value of
kFillRect causes the entire rectangle to be filled. A value of zero causes the drawing
to stop after the last letter in the string.

The angle argument is expressed in fractional clockwise rotations, but is currently
ignored.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 12 -3

The copyMode argument can have the values eOpaque, eBlend, or eClutAlpha. In
eOpaque mode, a box of backColor is drawn with text in foreColor anti-aliased
against the backColor box. In eBlend mode, the existing framebuffer will be read,
and text in the foreColor will be anti-aliased against the existing pixels.

The eClutAlpha mode can only be used for text drawn in a framebuffer that uses the
eClut8 pixel format, and also will be drawn in the OSD plane. In this mode, the text
pixel values are divided by the graphics context parameter gc.textDiv, and added to
gc.TextBase to produce an index into the current Color LookUp Table that has been
set in the NUON chip. (See bios setClut function). The produced index is clipped to
the range gc.TextMin and gc.TextMax. The CLUT values used for text should be
arranged so that opacity decreases from gc.TextMin to gc.TextMax.

Note: The eClutAlpha mode expects the palette entries to decrease in opacity as the
index value increases. This is the same convention as is used in CLUT based line
and ellipse drawing. This is the reverse of the previously documented eAlpha mode
which is no longer supported.

The text pixel values are actually mask values ranging from 0 to 63 that represent
coverage of a pixel. These values are used for blending and anti-aliasing of text over
video or against a background.

Two important text properties must be set in the graphics context. The field
gc.translucentText will ordinarily be set to 0, but if the copyMode parameter is
eOpaque and the text is to be displayed on top of video using translucent foreground
or background colors, then gc.translucentText should be set to 1.

The gc.textWidthScale value is a 16Dot16 fixed point number representing the ratio
of the width of text characters to the height. A value of 0x10000 corresponds to 1.0
(the default value) and is generally the correct setting. Other values can be used to
produce condensed or expanded text. In particular, a value of 0x8000 (0.5) should
be used if horizontal pixel doubling is being used in the graphics plane.

12.1.6 mmlInitScaledTextStyle
void mmlInitScaledTextStyle (mmlTextStyle* tsP , mmlFont fontP,
 int pointsize, mmlColor foreColor,
 mmlColor backColor, textMix copyMode,
 int copyFlags, f16Dot16 angle,
 f16Dot16 xScale)

Set the properties of a text style.

The pointsize parameter is the vertical height (in pixels) of a line of text including the
leading between adjacent lines.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 12 -4

The foreColor parameter is the color of the text.

The backColor parameter is used to color all the non-text pixels in the line if the
copy mode is eSourceCopy.

The copyMode parameter specifies how to combine the text with the background.
The only value supported currently is 0 which is eSourceCopy.

The copyFlags parameter controls more properties of the text draw. A value of
kFillRect causes the entire rectangle to be filled. A value of zero causes the drawing
to stop after the last letter in the string.

The angle argument is expressed in fractional clockwise rotations, but is currently
ignored.

The xScale argument is a fractional scale value that can be used to compress or
expand the width of characters. The default value is 0x10000 (1.0).

12.1.7 mmlInitTextStyle (deprecated)
void mmlInitTextStyle (mmlTextStyle* tsP , mmlFont fontP,
 int pointsize, mmlColor foreColor,
 mmlColor backColor, textMix copyMode,
 int copyFlags, f16Dot16 angle)

Set the properties of a text style. Same as mmlInitScaledTextStyle() except that the
scaling option is always set to 1.0.

12.1.8 mmlSetTextStyle
void mmlSetTextStyle (mmlFontContext fc, mmlTextStyle* tsP)

Set the properties of the default text style in the font context from an existing
mmlTextStyle. The default mmlTextStyle in the mmlFontContext always controls
any text rendering.

12.1.9 mmlSetTextModel
void mmlSetTextModel(mmlFontContext fcP, textModel model);

Set the current text model to eNewModel or eOldModel (default). This call should
be made immediately after the mmlInitFontContext call. In the old text model, the
size of text is automatically adjusted so that a string will always fit in a box that is

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 12 -5

pointSize high, even if the string contains the letter with the highest ascender and the
letter with the lowest descender.

In the new text model, no automatic size adjustment is made. So text will be
rendered at exactly the pointSize specified in the style or text properties. This will
generally be larger than in the old text model. If lines are drawn so that their
baselines are exactly pointSize above each other, the letters in the bottom line may
collide with the letters in the upper line. This will be particularly noticeable if the
eOpaque copy mode is used rather than the eBlend mode.

A safe line height can be found by making the mmlGetLayoutMetrics or
mmlGetLayoutStyleMetrics call and setting the line height to the sum of the font
ascent and font descent.

12.1.10 mmlSimpleDrawText
void mmlSimpleDrawText(mmlFontContext fP , mmlDisplayPixmap V,
 textCode txt[], int numLetters, m2dRect rP)

Draw numLetters of text in the pixmap beginning at the top left corner of the
rectangle. Clip the text to the rectangle boundaries. Use the typeface and style
characteristics specified in the mmlFontContext. The m2dRect bottom right
coordinates are modified to describe the rectangle actually occupied by the rendered
text.

12.1.11 mmlSimpleDrawBaseline
void mmlSimpleDrawBaseline(mmlFontContext fcP, mmlDisplayPixmap*
screenP, textCode str[], int numLetters, int baseX, int baseY);

Draw numLetters of text in the pixmap beginning at the point (baseX, baseY). This
point is taken to be the text baseline point where drawing of the string will begin.
The only clipping done is to the displayPixmap itself. Use the typeface and style
characteristics specified in the mmlFontContext.

12.1.12 mmlGetTextBox
void mmlGetTextBox(mmlFontContext fP, textCode txt[],
 int first, int last, m2dRect* rP)

Returns the coordinates of the rectangle that will be required to contain the substring
of the text beginning at character first and ending with character last when it is
rendered as a single line of text using the typeface and style characteristics specified
in the mmlFontContext. The initial values of the m2dRect are the left top position

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 12 -6

where the complete text string is to be drawn and the right bottom coordinates of the
clipping rectangle that must contain the text.

12.1.13 mmlGetStyleLayoutMetrics
mmlLayoutMetrics* mmlGetStyleLayoutMetrics (mmlFontContext fP,
 mmlTextStyle* tsP)

Returns a pointer to an mmlLayoutMetrics object. This object contains info useful
for laying out text in the specified mmlTextStyle. See section 3.2.9 for information
about the format of this object.

12.1.14 mmlGetLayoutMetrics
mmlLayoutMetrics* mmlGetLayoutMetrics (mmlFontContext fP)

Returns a pointer to an mmlLayoutMetrics object. This function is similar to the
mmlGetStyleLayoutMetrics function, except that it returns metrics for the current
style in the font context (i.e. the last style to be created by mmlSetTextProperties or
mmlSetTextStyle).

12.1.15 mmlCharKindQ
charKind mmlCharKindQ(textCode c, textEncoding standard)

Returns the kind of character represented by the textCode c in the specified standard.
Returns eLetter, eNumber, eWhiteSpace, ePunctuation, or eExtra.

This function can be used to do line breaking at ends of words. The only encoding
standard supported in this version is eAscii. Future versions will support eUnicode.

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 13 -1

13. Sequence Functions

13.1.1 mmlOpenSeq
mmlStatus mmlOpenSeq(mmlGC* gcP, mmlSequence* seqP, int numCmds);

Opens an mmlSequence object to record up to numCmds operations. After calling
mmlOpenSeq, further drawing commands are not executed; instead, they are
collected as a sequence for later execution. To stop recording call mmlCloseSeq.
This will cause drawing commands to resume being directly executed.

Returns eOK, unless memory could not be allocated for numCmds operations. An
allocation failure is reported as eSysMemAllocFail.

13.1.2 mmlCloseSeq
void mmlCloseSeq(mmlGC* gcP, mmlSequence* seqP)

Stops recording drawing operations into the currently open sequence object. The
sequence can then be executed with mmlExecuteSeq. or more commands can be
called directly. The sequence can be executed any number of times until it has been
released with mmlReleaseSeq.

13.1.3 mmlExecuteSeq
void m2dExecuteSeq(mmlGC* gcP, gcP, mmlSequence* seqP)

Execute the commands previously recorded into the sequence object. If a recorded
command uses arguments obtained from the graphics context, the values that were in
the graphics context at the time of recording are used, not the values present at the
time of execution.

13.1.4 mmlReopenSeq
mmlStatus mmlReopenSeq(mmlGC* gcP, mmlSequence* seqP,
 int numMoreCmds)

Reopens a previously recorded sequence to append more commands. If memory can
not be allocated for numMoreCmds, eSysMemAllocFail is returned, else the function
returns eOK. NumMoreCmds can be 0. When commands are being recorded and
allocated memory has been used, an attempt will be made to allocate more memory.
However, if this attempt fails, there is no direct method of reporting the failure; the

14 -M AR -01 V M LAB S C ON FID E N TIAL P R OP R IE TAR Y P AGE 13 -2

command is simply not recorded. Programs should either insure that there is
sufficient memory by using mmlOpenSeq and mmlReopenSeq for known numbers
of commands, or the program should monitor the sequence object’s field value seqP-
>numCommands to verify that it has been incremented after each command has been
recorded.

13.1.5 mmlReleaseSeq
void mmlReleaseSeq (mmlGC* gcP, mmlSequence* seqP)

Releases the memory previously allocated for the sequence. The sequence can not be
used again until it is again initialized with mmlOpenSeq. mmlReleaseSeq can be
called on a currently open sequence, however, this would not generally be done,
because the sequence could not be executed.

