
Merlin Troubleshooting Guide

March 1, 1999

VM Labs, Inc.
520 San Antonio Rd
Mountain View, CA 94040
Tel: (650) 917 8050
Fax: (650) 917 8052

NUON
���

and NUON Media Architecture
���

are trademarks of VM Labs, Inc. The information
contained in this document is confidential and proprietary to VM Labs, Inc. and is provided
pursuant to a Non-Disclosure agreement between VM Labs, Inc. and the recipient. It may
not be distributed or copied in any form whatsoever without the prior written permission of

VM Labs.

Copyright notice

Copyright c
�

1998–1999 VM Labs, Inc.
All Rights Reserved

The information contained in this document is confidential and proprietary to VM
Labs, Inc., and is provided pursuant to a Non-Disclosure agreement between VM
Labs, Inc. and the recipient. It may not be distributed or copied in any form whatso-
ever without the prior written permission of VM Labs.

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY i

Contents

1 Compile Time Problems 1
1.1 Building Programs . 1

1.1.1 What flags should I use? . 1
1.1.2 What do -mreopt and -mreopt-more do? 1
1.1.3 How can I change the address where my C program runs? . . 1
1.1.4 How should I track down compiler problems? 2

1.2 Code Generation . 2
1.2.1 How can I see the assembly language generated by the com-

piler? . 2
1.2.2 Why is the generated code so big and slow? 2

1.3 Warning and Error Messages . 2
1.3.1 Unable to find previous instruction packet for padding 2
1.3.2 Cache stall may cause repeated read/write to register 3
1.3.3 Obsolete instruction form . 3
1.3.4 Obsolete shift . 3
1.3.5 Unrecognized storage class 0 (assuming debugging) 4

2 Run Time Problems 5
2.1 Crashes . 5

2.1.1 What are the exceptions, and what do they mean? 5
2.1.2 Does the address reported for an exception mean anything? . 6
2.1.3 The whole system locks up, and the debugger won’t respond! . 6

2.2 Miscellaneous Bad Behaviour . 6
2.2.1 My program hangs in the same spot all the time! 6
2.2.2 Why doesn’t my assembly language code for sending comm

bus packets or doing DMAs work? 7
2.2.3 Why does my program crash mysteriously, and none of the

printf calls work? . 7
2.2.4 My other bus DMAs aren’t working right. What’s wrong? 7
2.2.5 What could cause SDRAM memory corruption? 7
2.2.6 My C program is putting data into memory, but other MPEs

can’t read it. What’s wrong? . 8
2.2.7 I have some data written to memory by another MPE, but my

C program isn’t reading it correctly. 8
2.2.8 Why does the video output look funny? 8
2.2.9 Can I use a 4bpp or 8bpp frame buffer? 8

3 Debugger Problems and Tips 9
3.0.1 My program doesn’t start at all! 9
3.0.2 Why can’t I see the C source for my function? 9
3.0.3 How can I find out what C variable or function an address refers

to? . 9
3.0.4 The mdmacptr register has the wrong value in it! 10

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY ii

Index 11

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY iii

1. Compile Time Problems

1.1 Building Programs

1.1.1 What flags should I use?

The C compiler generally requires the -O flag in order to generate good code, and
also to do the code analysis necessary for producing effective warnings. So always
use -O (or a higher level of optimization, such as -O2).

During development, it makes sense to use the lowest reasonable level of opti-
mization (to make code generation faster). You should also use -g to get debugging
information into the code, and -Wall to produce the maximum level of warnings from
the compiler – this will help to catch errors such as uninitialized variables, undeclared
functions, and so forth. Be sure to correct warnings about undefined prototypes for
any functions that take a variable number of arguments (for example, printf), be-
cause mgcc cannot correctly call such a varargs function unless a prototype is in
scope. For example, to provide a prototype for printf, make sure you include the
stdio.h header file.

For production code, it’s worthwhile to bump the optimization level up a bit to
-O2, and to add assembler optimization with -mreopt. Note that the -mreopt
option makes some cache bugs (section 2.2.1) more likely to occur, so be sure that
all variables in local RAM (as opposed to those accessed via the cache) are read
with the macro GetLocalVar from the libmutil package.

1.1.2 What do -mreopt and -mreopt-more do?

These mgcc flags instruct the assembler to do instruction packing and re-arranging.
This can significantly improve the generated code, but has the drawback that debug-
ging becomes very difficult (because instructions have been extensively re-arranged).
It also makes a cache bug in the beta hardware (section 2.2.1) more likely to occur
unless you’ve been careful to use the GetLocalVar macro for all local memory
references.

-mreopt corresponds to the LLAMA flag -O, and -mreopt-more corresponds
to the LLAMA flag -O2. -mreopt-more is generally much slower than -mreopt,
and gives only a marginal improvement in the resulting code, so it probably isn’t worth
using – just stick with -mreopt unless you’re trying to squeeze out every possible
cycle.

1.1.3 How can I chang e the address where my C program runs?

The linker’s -B flag allows you to set the default load address. If you are invoking the
linker directly from the makefile, you can pass an argument like -B=0x40000000
to load your program at the base of SDRAM. If the linker is being invoked indirectly
through mgcc, you’ll have to use its -Xlinker option, e.g. -Xlinker -B=0x40000000.

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 1

1.1.4 How should I track down compiler problems?

If you’re getting some weird compile time problem that isn’t covered above, try giving
the -v (for verbose) flag to mgcc. This will cause it to print a detailed listing of what’s
going on. This is often helpful in diagnosing a problem.

1.2 Code Generation

1.2.1 How can I see the assemb ly langua ge generated by the com-
piler?

Use the -S switch to generate an assembly language file instead of a COFF object
file. For example, use:

mgcc -O -Wall -o foo.s -S foo.c

to generate the assembly language code for foo.c.
Note that the effect of using the -mreopt flags will not be shown, since -S only

runs the compiler, not the assembler, and it is the assembler that does -mreopt. To
see the effect of -mreopt, try:

mgcc -O -Wall -o foo.s -S foo.c
llama -fasm -O -c -b -o foo.opt foo.s

1.2.2 Why is the generated code so big and slo w?

By default, the C compiler does no optimization at all. Needless to say, this means
that the code it generates is big and slow. You should always use the -O flag to the
compiler – this will dramatically reduce the size of the generated code. See “What
flags should I use?” (section 1.1.1).

Also, you should remember that a C compiler will never generate code as good
as that produced by a good human programmer. We’re continuing to work on im-
provements for the compiler, but for the really time critical inner loops you may want
to write the code in assembly language by hand.

1.3 Warning and Error Messages

1.3.1 Unable to find previous instruction packet for padding

This warning message from the assembler is harmless. Some instructions must be
aligned in particular ways; for example, no instruction can cross a cache line bound-
ary. The assembler forces alignment by inserting padding into instruction packets.
This padding uses space, but does not take any time to execute. The operation
of padding is normally transparent, but there are some times when the assembler
needs to insert padding to force alignment but is unable to find a packet to insert
the padding into. For example, this can happen if some data has been inserted in
the middle of code. In these circumstances, the assembler is forced to insert a nop

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 2

instruction. The warning informs the user that this has happened. It’s useful for an
assembly language programmer, since it can be a problem in a carefully crafted in-
ner loop; but the C programmer can safely ignore this message, and indeed future
versions of the LLAMA assembler will not output it when run on compiler generated
code.

1.3.2 Cache stall may cause repeated read/write to register

This is a warning about a bug in the beta hardware (section 2.2.2) that can cause
problems with accesses to certain volatile registers. If the instruction that causes
this warning is in a branch delay slot, move it out of the delay slot. If it is in a large
packet, try moving it to a smaller packet or make it an instruction all on its own. If all
else fails, insert one or two nop instructions before the offending instruction.

1.3.3 Obsolete instruction form

The syntax for the addr changed in order to accomodate some new instruction se-
mantics which became possible late in the design of the chip. The old syntax took

addr #1,rx

to mean “add 1 in 16.16 fixed point format to rx”. However, it is in fact possible to
add an arbitrary 32 bit constant using addr, and so an ambiguity arose; how could
we specify adding small literal constants? As of revision 20 of the instruction syntax,
the addr instruction always takes a 32 bit constant, so the example above should
become:

addr #1<<16,rx

1.3.4 Obsolete shift

There are several instructions (for example, mul sv) which operate on small vectors,
which are the upper 16 bits of each of four consecutive registers. Because only 16
bits were involved in the operation, the original assembly language syntax treated
all shifts as being “16 bit”, that is, considering only the bits involved in the operation.
However, since the small vectors occupy the upper 16 bits of registers, this can
be confusing. Other multiply operations have shift counts relative to the full 32 bit
registers. For consistency’s sake, and to allow for future expansion of the instruction
set, the assembly syntax has been changed for revision 20 of the instruction set to
make the small vector operations use full 32 bit shifts. During the switch over the
assembler will accept old forms but issue warnings. It is important to correct the
warnings, because there is one ambiguity (the old shift of 0 will become 16, which
conflicts with the old shift of 16 which has become 32). Follow the assembler’s
instructions and your code should be OK.

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 3

1.3.5 Unrecogniz ed stora ge class 0 (assuming debugging)

This message comes from some of the object file manipulation tools (such as vmnm
and vmar). It is an artifact of the fact that these tools were ported from a different
environment, and that the Merlin object file format has been extended with some new
symbol types. The message is harmless, as the assumption (that the symbols are
for debugging) is correct.

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 4

2. Run Time Problems

2.1 Crashes

2.1.1 What are the exceptions, and what do they mean?

Whenever an MPE detects an erroneous condition, it will raise an exception which
halts that processor. Which exception occurred will be indicated in the excepsrc
register, and will be reported by the debugger.

The most common exceptions, and their codes, are:

halt (0x01) This isn’t really an abnormal condition; it is the exception raised by the
halt instruction. Most often this is caused by a call to the C exit function.
If you’re using exit to signal errors, you probably should pass a unique code
to exit for each erroneous condition. This code is passed to exit in register
r0, so it will be very easy for you to figure out from the contents of that register
what went wrong.

bad data address (0x80) This exception is raised when the processor detects a
data address that is not a valid address. Usually this means a pointer that’s
out of range (for example, a NULL pointer). If you have compiled your program
with the -g flag, the debugger should be able to show you the offending C
source line. If for some reason the source code isn’t available (for example, the
error occurred in library code, or in some assembly language you’ve written)
then you can try to diagnose the problem from the code. Because instructions
are pipelined, the program counter is probably not pointing at the offending in-
struction any more. Most likely the instruction that caused the exception is a
load, store, push, or pop that is two instructions before the one where the ex-
ception was detected. If it was a push or pop instruction, check the hardware
stack pointer sp for underflow or overflow. If it was a ld s, st s, or similar
instruction, check the register used for the indirect address to see where it is
pointing.

bad instruction address (0x100) This exception is due to the program counter be-
ing set to a bad address via an indirect jmp or jsr, or by an rts instruction
when the rz register has a bad value. This exception is raised when pcfetch
is detected to be invalid; at this point the pcexec program counter (the one
that the debugger normally uses) is one instruction past the jmp, jsr, or rts
which caused the problem. If the offending instruction is an rts, then it’s quite
possible that the rz register has been restored incorrectly because the stack
has become corrupted. Check the hardware stack pointer sp if the problem
occurred in an assembly language function, or the C stack pointer r31 if it was
inside a C function.

dma exception (0x200) This exception is raised by the main bus DMA engine when
it detects a write to the mdmacptr register while the PENDING bit is set, or if
an illegal address is written to mdmacptr. Because the error occurs outside of
the processor, many cycles can pass between the offending write to mdmacptr

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 5

and the raising of this exception. When you get this exception, check the value
of mdmacptr displayed by the debugger; the value there may give you a clue
as to what happened. Also, try to figure out from the current value of the
program counter when the last write to mdmacptr occurred. Check there to
make sure that code there checks the PENDING bit (bit 5 of mdmactl).

2.1.2 Does the address repor ted for an exception mean anything?

If you’re using a version of the puffinw debugger dated before September, 1998,
then the answer is probably “no”. This is a flaw in puffinw that we’re working to
fix. Just ignore any information reported by the debugger except for the exception
number itself.

2.1.3 The whole system loc ks up, and the debugger won’t respond!

If neither the debugger nor the mload program can communicate with the debug
stub on the development board, then things have (obviously) gone seriously awry.
It is possible to reboot just the debugging stub (for example, if you have a serial
line hooked up to it the “escape” key will reboot the stub while leaving the Merlin
untouched). If rebooting the stub doesn’t help, then some MPE code has forced
a DMA controller (most likely the other bus DMA controller) into a very bad state.
Tracking this down can be tricky. Carefully examine all other bus DMAs, and keep
a log of them as they execute. Even after a complete system reset, the internal
memories of MPEs 1, 2, and 3 are usually preserved, so these can be used for
logging.

2.2 Miscellaneous Bad Behaviour

2.2.1 My program hangs in the same spot all the time!

If there’s no apparent reason for the hanging, then this may be a cache bug in the
beta hardware. The symptoms are that the program hangs, but clicking on STOP
and then RUN again in the debugger will cause it to resume (at least until the next
time this code is reached). There is no loop at the point where the code is hanging.

If a load instruction causing a cache miss is followed immediately by a load or
store instruction to local memory (which includes any registers accessed via load
or store), then the beta hardware will lock up. You can avoid this situation in as-
sembly language by re-arranging your code and/or by inserting nop instructions
to make sure that a load from cache is not immediately followed by a local mem-
ory access. In C code, you should always use the GetLocalVar macro from the
<merlin/merlutil.h> header file to load any values from local memory and/or
registers.

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 6

2.2.2 Why doesn’t my assemb ly langua ge code for sending comm bus
packets or doing DMAs work?

If it seems as though comm bus packets are being sent multiple times, or DMAs
are being messed up, from code that is running in a cached MPE, it may be that
you’re encountering another cache bug. If an instruction accessing a “volatile” reg-
ister (such as the comm bus send or receive registers, or mdmacptr occurs near
the end of a cache line or in a branch delay slot, and a cache miss occurs while
fetching the next instruction, the original register may be accessed multiple times.
For most registers this isn’t a problem, but some hardware registers change state
when accessed. The assembler will insert padding to try to avoid this bug, and issue
warnings when it cannot; but it can’t always recognize when this situation happens.
For example, it doesn’t detect indirect accesses (in which the address of the register
has been loaded into a general purpose register).

2.2.3 Why does my program crash mysteriousl y, and none of the printf
calls work?

It is very important to provide prototypes for printf and any other function that
takes a variable number of arguments. The Merlin calling convention is different
for functions with a fixed number of arguments and those with a variable number of
arguments, and the compiler must know which is which. Make sure you do:

#include <stdio.h>

if you have any printf calls.
Invoking mgcc with the -O and -Wall flags (section 1.1.1)mgcc flags will allow

the compiler to report any functions that don’t have prototypes, so that this bug is
caught at compile time.

2.2.4 My other bus DMAs aren’t working right. What’s wrong?

If you’re having trouble with other bus DMAs, the first thing to suspect is the beta
hardware bug (fixed in production silicon) which causes problems when an other
bus DMA ends just before a page boundary (in development machines this is a 2K
boundary). The easiest and probably best way to avoid this bug is to make sure that
all other bus transfers are vector aligned and start on a vector boundary. This can be
tricky if you’re using doing DMA from C data structures. GCC’s align directive
can help for statically allocated data structures. For dynamically allocated structures,
you may have to insert some code to make sure that your structures end up aligned
on 16 byte boundaries.

2.2.5 What could cause SDRAM memor y corruption?

If you’re noticing that objects in SDRAM (such as texture maps or other multimedia
data) are becoming corrupted, check your frame buffer code carefully to make sure
that all pixel draws are happening within the borders of the screen. Because of the

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 7

way screen memory is laid out, writing to an illegal bilinear address (for example an
(x,y) address where x is too large, even if y is legal) can result in a write to a memory
location well beyond the boundaries of the frame buffer.

The MML3D library has some problems with front plane clipping, and so can
trigger this bug. For safety’s sake, always use a clipping rectangle several pixels
smaller than the screen. This problem will be fixed in a future release of the MML3D
library.

2.2.6 My C program is putting data into memor y, but other MPEs can’t
read it. What’s wrong?

The cache is not write-through; that is, data in the cache doesn’t get written back
to memory until either the cache line is re-used or an explicit flush operation is per-
formed. You should call the DCacheSync function whenever another MPE may
want to read data from MPE 0. The DCacheFlush function does the same thing as
DCacheSync, but it also causes the cache to be invalidated so that if the C program

tries to access memory the copy in cache will not be used.

2.2.7 I have some data written to memor y by another MPE, but my C
program isn’t reading it correctl y.

This is most likely a cache coherency bug. The C program should call the DCacheFlush
function to flush the cache before trying to read from external memory that another
MPE is writing to. Note that this is an expensive operation, so try to minimize the
number of times your program does this. For example, it’s a good idea to group all
inter-process communication using memory into a small section of code.

2.2.8 Why does the video output look funn y?

Oz hardware has some problems with scaling video. Unless you set the video up to
be 360 or 720 pixels across, you may see some vertical stripes or other interpolation
artifacts. This bug is fixed in Aries.

Another Oz bug (also fixed in Aries) is that fully saturated 16 bit per pixel colors
can be distorted and come out looking wrong. This is even more of a problem if the
two tap vertical filter has been turned on; in that case, the whole screen is likely to
take on a greenish cast.

2.2.9 Can I use a 4bpp or 8bpp frame buffer?

Yes, if you use the overlay channel. The main video channel does not support CLUT
based video modes. See the BIOS documentation for information on setting up video
modes.

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 8

3. Debugger Problems and Tips

3.0.1 My program doesn’t star t at all!

This could be one of two things.

1. If the loading process hangs (so mload or puffin never completes the load)
then probably there are bad or overlapping addresses in the COFF file. You
can use the coffdump utility to check this. Do:

coffdump -h foo.cof

and look at the resulting listing of sections. Make sure that all load addresses
are valid. Be especially vigilant with sections that load into local instruction or
data RAM (those are sections with addresses in the ranges 0x20300000-0x20301fff
and 0x20100000-0x20101fff, respectively). A common problem is that a
section overflows the actual memory available on an MPE. For example, while
MPE 0 has 8K of instruction and data RAM, the other MPEs have only 4K of
each, so a program which runs fine on MPE 0 may not work on other MPEs.
Also, the tools aren’t able to give warnings about sections that overflow the 4K
limits, so check that the starting address of each section plus its size is less
than the end of the real memory present on the MPE.

2. If the sections in the COFF file are all OK, make sure that the starting address
for your program is in local instruction RAM. If it is not, then the cache may not
have been properly initialized. This will not be a problem any more once the
ROM BIOS has shipped, but in early development systems without a BIOS ev-
ery program must start with a short cache initialization routine which is loaded
into local instruction memory. This routine is contained in the crt0.o file which
is automatically linked with all C programs.

3.0.2 Why can’t I see the C sour ce for my function?

Make sure you used the -g flag (section 1.1.1) to tell mgcc that you want debugging
information included in all of the obect files that you made.

3.0.3 How can I find out what C variab le or function an address refers
to?

If you’re confronted with a situation in which you want to find out what C function
or variable corresponds with an address (for example, a pointer value found in a
register), then you can use the vmnm utility. Do something like:

vmnm -n foo.cof > foo.map

(Note: ignore any warnings about unknown symbol types from vmnm: these are
harmless.) The file “foo.map” will now contain a sorted list of the symbols in your
executable file.

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 9

3.0.4 The mdmacptr register has the wrong value in it!

mdmacptr is updated by the hardware as the DMA engine reads commands, so
usually it will be left pointing at the vector just after the end of the DMA command.
So for a linear transfer, the actual DMA command will start 16 bytes before the final
value of mdmacptr, and for a bilinear transfer it will be 32 bytes before.

Note that the odmacptr register does not update as the other bus DMA exe-
cutes, so it always points at the beginning of the other bus DMA command. You
should also note that the upper bits of the address are not stored, so for example the
address 20100020 will appear in odmacptr as 00100020.

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 10

Index

DCacheFlush, 8
DCacheSync, 8
GetLocalVar, 1, 6

addr instruction, 3
alignment, 2
assembler, 1–3

cache, 1–3, 6–8

debug stub, 6
debugger, 6, 9

excepsrc, 5
exception, 5
exit, 5

LLAMA, 3

mdmacptr, 5–7, 10
mdmactl, 6
mgcc clags, 1
mgcc flags, 5, 7, 9
mgcc options, 1
MML3D library, 8

object file, 4
odmacptr, 10

padding, 2
printf, 1, 7
prototypes, 1, 7

r0, 5
r31, 5
rx, 3
rz, 5

small vectors, 3
sp, 5

texture maps, 7

4/6/1999 VM LABS CONFIDENTIAL PROPRIETARY 11

