
V M L A B S

LLAMA: An Optimizing Assembler for
NUON

User’s Manual

Version 2.75

VM Labs, Inc.
520 San Antonio Rd
Mountain View, CA 94040
Tel: (650) 917 8050
Fax: (650) 917 8052

NUONtm and NUON Media Architecturetm are trademarks of VM Labs, Inc. The information
contained in this document is confidential and proprietary to VM Labs, Inc. and is provided
pursuant to a Non-Disclosure agreement between VM Labs, Inc. and the recipient. It may
not be distributed or copied in any form whatsoever without the prior written permission of

VM Labs.

Copyright notice

Copyright c
1997–2001 VM Labs, Inc.
All Rights Reserved

The information contained in this document is confidential and proprietary to VM
Labs, Inc., and is provided pursuant to a Non-Disclosure agreement between VM
Labs, Inc. and the recipient. It may not be distributed or copied in any form whatso-
ever without the prior written permission of VM Labs.

This is a preliminary specification. VM Labs reserves the right to make
changes to any and all of the interfaces described in this document.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY i

ii VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

Contents

1 Introduction 1
1.1 Usage . 1

1.1.1 Flags . 1

2 The LLAMA Assembly Language 7
2.1 Instructions . 7

2.1.1 Instruction packets . 7
2.1.2 Before and after methods . 8

2.2 Equates . 8
2.3 Labels and Symbols . 8
2.4 Local Symbols . 9
2.5 Comments . 9
2.6 Expressions . 9

2.6.1 Numbers . 10
2.6.2 Boolean operators . 10
2.6.3 Comparison operators . 11
2.6.4 Bitwise operators . 11
2.6.5 Shift operators . 11
2.6.6 Arithmetic operators . 11
2.6.7 Operator precedence . 12
2.6.8 Functions . 12

2.7 Predefined Symbols . 13
2.8 Conditional Assembly . 14
2.9 Macros . 15

3 Directives 17
3.1 .align . 17
3.2 .align.s . 17
3.3 .align.sv . 17
3.4 .align.v . 17
3.5 .alignlog . 17
3.6 .ascii . 18
3.7 .asciiz . 18
3.8 .binclude . 18
3.9 .bss . 18
3.10 .byte . 18
3.11 .cache . 18
3.12 .comm . 19
3.13 .data . 19
3.14 .dc.b . 19
3.15 .dc.s . 19
3.16 .duc.s . 19
3.17 .dc.sv . 20

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY iii

3.18 .dc.v . 20
3.19 .dc.w . 20
3.20 .duc.w . 20
3.21 .ds.b . 20
3.22 .ds.s . 20
3.23 .ds.sv . 21
3.24 .ds.v . 21
3.25 .ds.w . 21
3.26 .else . 21
3.27 .end . 21
3.28 .endif . 21
3.29 .error . 21
3.30 .export . 22
3.31 .float . 22
3.32 .include . 22
3.33 .if . 23
3.34 .ifdef . 23
3.35 .ifndef . 23
3.36 .import . 23
3.37 .lcomm . 23
3.38 .linkbase . 23
3.39 .macro . 24
3.40 .mend . 24
3.41 .module . 24
3.42 .nocache . 24
3.43 .nooptimize . 24
3.44 .optimize . 25
3.45 .origin . 25
3.46 .overlay . 25
3.47 .revision . 26
3.48 .section . 27
3.49 .segment . 28
3.50 .start . 28
3.51 .text . 28
3.52 .warn . 28
3.53 .while . 29
3.54 .word . 29

4 Optimization 31
4.1 General . 31
4.2 Optimization of Binary Code . 32
4.3 Assembly Language Optimization . 32

4.3.1 Limitations of assembly language output 33

5 Overlays 35

iv VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

6 Interfacing C and Assembly 37
6.1 Calling Conventions . 37
6.2 Header Files . 37

7 Bugs and Shortcomings 41
7.1 Bugs . 41
7.2 Shortcomings . 41

8 Error Messages 43
8.1 Unable to find previous instruction packet for padding 43
8.2 Cache stall may cause repeated read/write to register 43
8.3 Obsolete instruction form . 43
8.4 Obsolete shift . 44
8.5 Local access following remote load may trigger cache bug 44

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY v

vi VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

1. Introduction
LLAMA is an assembler for the NUON media processor. Besides the normal abilities
of an assembler, it also has an instruction scheduler and optimizer built into it, so
that it can (optionally) optimize your code for you.

1.1 Usage

llama [-b][-B addr][-chip version][-compiled][-c#]
[-Dsymbol=value][-e errfile][-f FMT][-g-old]
[-i incfile][-Ipath]
[-jJUMP][-M#][-nolisp][-nologo][-o outfile]
[-O#][-r#][-v] file.s [file2.s ...]

All of the file names given after the flags are assumed to be input files, and they
are processed one after another, the output being collected into a single output file.

1.1.1 Flags

-b Assume condition codes need not be preserved across branches. Useful only
when optimization is taking place (-O1 or higher). Without this flag, LLAMA

will assume that condition codes set by an instruction may be used in some
instruction after a branch (including a jsr). If the -b flag is given, then LLAMA

assumes that the code following any branch will not use condition codes gen-
erated before the branch. Older versions of the compiler did not do any instruc-
tion scheduling in branch delay slots, and the -b flag was useful for these. This
is no longer the case, and in fact we recommend that you not use -b any more.

-B address Specifies a base address at which to load overlay sections and sections
without an explicit .origin directive. All such sections will be placed one after
another, starting at this address. The default for the load address is the base
of system RAM (0x80000000). This is usually a poor choice, since the BIOS
jump tables go here, so use of the -B option is almost always necessary when
the assembler is performing the link and not all sections have a .origin.

Note that this option has no effect for relocatable COFF output files, since for
such files it is the linker’s responsibility to assign load addresses. The use of
the linker for this purpose is strongly recommended. The assembler should be
used to perform linking only for trivial programs.

Note also that the .linkbase directive may also be used to set the base load
address.

-chip option Selects the version of the NUON chip for which assembly is targetted.
The available options are alpha, oz, and aries. The alpha chip is supported
only if LLAMA was built with special options (it is very obsolete and no units are
available, probably). The oz chip is the BETA silicon, and is basically identical
to aries (from an assembler instruction point of view) except that in the oz

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 1

chip if an RCU no-op instruction is needed to hold some dec instructions then
a version of the addr instruction is synthesized.

The default of aries should be used for all actual production use.

-compiled Indicates that the code being assembled was generated by a compiler.
This supresses warnings about performance issues (e.g. when a nop needs to
be inserted for padding) which may be of interest to assembly language coders
but is irrelevant for compiled code.

-cNUM Assemble the program to run in cache. This affects how instruction padding
is done, since for code running in the cache no packets may extend across
a cache line boundary. NUM is the size of cache lines, in bytes; the default
value for this (if just -c with no NUM is given) is 32. Code compiled for a given
instruction cache size may be run if the hardware cache line size is set larger
than the -c option specified, but will not work correctly if the line size is smaller.

See also the .cache and .nocache directives.

-Dsymbol=value Defines a symbol. If the value is omitted, a default value of 0xdeadbeef
is assumed.

-e errfile Output an error file suitable for use by the lisp emulator. This causes er-
ror messages to go into the file “errfile” instead of to the standard error out-
put, and additionally causes the syntax of the error messages to conform to
what the emulator wants (they’re lisp expressions, and are only vaguely human-
readable).

-fFMT Specify output file format. LLAMA can produce output in a variety of formats.
The currently supported values for FMT are:

coff Create a COFF load file for the VM Labs linker to use. No options are
currently available for this output format. Note that the COFF files created
by -fcoff are not directly executable by the debugger; they must be
linked first. To create an executable COFF directly, use the -fecoff
output format.

ecoff Create an executable COFF load file. The resulting object file is not
linkable, and must not contain any unresolved references.

list Create an assembly listing; equivalent to -fasm,bin,expand-includes.
Note that listing files are not very useful if the resulting code is passed to
the linker, since the assembler does not know where the code will be
placed in memory.

asm(,bin)(,expand-syms)(,expand-includes)(,expand-all) Create
an assembly language output file. This option is useful for inspecting what
the optimizer would do to a program, or for assisting in hand optimization
of code (see Assembly Language Optimization (section 4.3)). Several
options may be given after the keyword asm; these must be seperated by
commas. The options are:

2 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

bin – annotate the assembly language with the binary forms of instruc-
tions

expand-includes – with this option, the contents of all of the files in-
cluded via .include directives are output; otherwise, just the .include
itself is output

expand-syms – expand all symbols to their final definitions. The default
is to pass symbol definitions through unchanged, e.g. for the code:

foo = 10
bar = r1
add #foo,bar

to be passed through more or less verbatim. If the expand-syms option
is given, then the symbols will be expanded in place, and so llama will
produce the output

add #10,r1

for the input above.

expand-all – expand symbols and .module directives. Has the same
effect as expand-syms plus expand-includes, and in addition re-
moves all .module, .import, and .export directives from the code.
Labels are output prefixed with their module name, e.g.

.module foo
mumble:

add r0,r0

will be output as:

__foo__mumble:
add r0,r0

Global labels (defined by .import and .export) will not have their mod-
ule names prefixed.

veri(,width=nn)(,segheader)(,rom)(,prefix=pppp) Create a verilog load file
for hardware simulation. Normally this will be a 128 bit wide file, with
section starting addresses given explicitly with verilog’s notation. Several
options may be given after the keyword veri; these must be separated
by commas. The options are:

segheader – causes a header to be prepended to each section. This
header consists of the section starting address, and the section length
(including the 8 byte header), as two 32 bit numbers. Without this option,
no header is prepended, and instead a verilog command is output which
specifies the load address.

width=nn – causes nn bits of data (rounded up to the nearest byte) to
be output per line. The default is 128 bits (the width of instruction ram).

rom – same as segheader,width=8; outputs a file suitable for loading
into a (simulated) ROM.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 3

prefix=pppp – causes the arbitrary string pppp to be output at the be-
ginning of each line of data output. The default is to set the prefix string to
a tab character. The prefix option must be the last option for -fveri
that is given (since the prefix string may itself contain commas).

binary Create a raw binary output file. No references to unresolved symbols
are permitted. Note also that the assignment of addresses should be such
that there are no “gaps” in the output, since the assembler cannot include
any gaps in the output file.

m68k Create a dump of data formatted for assembling with a 68000, Cold-
fire, or similar assembler. This option is equivalent to the combination of
options: -fveri,segheader,width=32,prefix=’ .dc.l 0x’.

mpo Create a .MPO load file for the debugger to use. No options are currently
available for this output format, which is now considered obsolete (the
COFF file format is preferred).

-g-old Output version 1.xxx debugging data. This option only has effect with COFF
output formats, and causes the resulting COFF files to have debugging infor-
mation compatible with old (pre September 1998) versions of puffin. The re-
sulting COFF files will probably not be useful with GDB or with newer versions
of puffin. This option is present only for compatibility with ancient tools; do not
use it any more.

-i file Process file “file” as though it had been the object of a .include directive
at the beginning of the first input file. Any number of -i options may be given
on the command line (i.e. you may use this mechanism to include an arbitrary
number of files).

-I directory Add the given directory to the path for .include directives. Paths
added on the command line will be searched immediately after the current
directory, in the order they are given. See the discussion of the .include
directive for details on the search path.

-jlocal

-jextern Specifies whether jmp and jsr instructions are to be assumed to be in
local MPE memory (-jlocal) or to be in external RAM (-jextern). The
default is -jlocal unless the -c option has been given, in which case it is
-jextern.

-Mnum Print a dependency list on the standard output, suitable for inclusion in a
Makefile. This option overrides the normal output process; if -M is given, then
no output (other than the dependency list) is produced and no error messages
are produced. An optional number may appear after the -M option to give
the maximum length of any lines which will be output; this may produce more
readable dependency files or may be necessary for some tools. Thus, -M80
will tell llama to break lines as near to column 80 as it can. These broken lines
will be terminated by a backslash followed by a newline (so that they may be
used in makefiles). -M by itself is equivalent to -M1000000.

4 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

-nolisp Removes all before and after methods from the code. Useful for disabling
debugging information.

-nologo Supresses the printing of the version identification information which is nor-
mally printed by LLAMA when it starts up.

-Osize Requests that the optimizer favor smaller code size over faster execution.
This option has no effect on -O1, and does not always result in smaller code
being output by -O2; it is more of a hint than a command!

-On Gives the optimization level. -O0 results in no optimization (the default). -O1
results in fast but not particularly clever optimization. -O2 results in slower
but fairly good optimization. Levels -O3 and higher may sometimes produce
slightly better code, but take an enormously greater length of time to run.

If you want to use optimization, we recommend level -O2 for final production,
and level -O1 for common use (because it is much faster).

Note that the use of any optimization level above -O0 will result in code that
may be exceedingly difficult to debug. See the section on optimization (section
4) for more details.

-o outfile Specifies the name of the output file. If this is not given, then output will
be sent to the standard output of the process.

-r revision Specifies the default assembly language syntax to be accepted, corre-
sponding to the revision level of the documentation. See also the .revision
directive.

-v Verbose flag: prints some (possibly) interesting statistics about the input and out-
put.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 5

6 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

2. The LLAMA Assembly Language

2.1 Instructions

The instruction mnemonics supported by LLAMA are the ones given in the MMP–L3B
Specifications, with the following exceptions:

addr The operand for the immediate form of the addr instruction should always
be given as a 16.16 fixed point number. Older versions of the manual were
ambiguous on this point. For backwards compatibility, the numbers -16 to +15
can be interpreted as (-16<<16), -15<<16, etc., if the -r19 command line
option or .revision 19 directive are included in the code.

The default revision is now 21, which causes no mapping to be applied to
immediate operands of addr.

dotp,mul p,mul sv In older versions of the assembly language manual the imme-
diate shift values for these instructions were given as 0, 8, 14, and 16, rather
than 16, 24, 30, and 32. Code using these old shift values may be assembled
by giving the -r19 command line option, or the .revision 19 directive.

ld io,st io The assembler accepts these as synonyms for ld s (or ld v) or st s
(st v). Use of this form allows backwards compatibility with applications writ-
ten for alpha silicon (which did not allow ld s or st s operations to I/O space).
It also may aid readability, since it helps to clearly distinguish “ordinary” mem-
ory accesses and accesses to I/O registers.

In addition, the assembler understands that the io forms of instructions are
references to local memory. These forms may be used for all local memory
accesses (even those that are not I/O registers) and this may help the assem-
bler issue more useful warnings about the cache bug which is triggered when
a local memory access follows a load instruction which causes a cache miss.

General For most instructions with a three operand form having two source registers
and a destination register, LLAMA will also accept a two operand form in which
the second source register is identical to the destination. For example, it is
legal to write addm r0,r2 instead of addm r0,r2,r2.

2.1.1 Instruction packets

Instruction packets are delimited with “f” and “g”. For example,

{ sub r0,r1
mul r2,r3
rts eq,nop

}

is a packet containing three instructions: an ALU instruction, multiply unit instruction,
and ECU instruction. All three instructions will execute simultaneously. See the

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 7

MMP–L3B Specifications for further details, and for the restrictions which apply to
instruction combinations within a packet.

2.1.2 Before and after methods

Besides instructions, a packet may also contain one before or one after direc-
tive. Each such directive is followed by a debugger script expression (referred to as
a before method or after method). before and after directives do not actually
generate code, but they do cause debugging information to be output which instructs
the debugger to place a breakpoint on the instruction packet containing the directive,
and to execute the corresponding debugger script code either before (for the before
directive) or after (for the after directive) the packet executes.

Not all versions of the Puffin debugger properly support before and after di-
rectives.

2.2 Equates

Synonyms may be defined for registers, condition codes, and expressions. The =
operator is used for all of these. For example, the following are all legal directives:

myreg = r1
x = $1000
x2 = 2*x + 1

In a disassembly listing generated by the -flist format, the calculated values
for equates to expressions will be displayed on the left, preceded by an = sign.

The scope of equates (and other symbols) may be controlled with the .module
directive.

2.3 Labels and Symbols

Identifiers consist of arbitrary sequences of letters, digits, underscores, or dollar
signs, beginning with a letter or underscore. Case is significant in identifiers; that
is, the symbol Foo is considered different from the symbol foo.

A label is an identifier followed by a colon, and must appear before any instruction
or directive on a line.

An identifier followed by two colons creates a global symbol; that is,

foo::
.dc.s 1

is equivalent to:

.export foo
foo:

.dc.s 1

8 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

2.4 Local Symbols

A local symbol or label is specified as a backquote character ‘ followed by an iden-
tifier as specified above. The scope of a local symbol extends only between the
nearest global labels, or within a macro body.

For example, the two definitions of ‘skip below represent distinct labels, and do
not cause any conflict or warning about redefinition (because the intervening global
label sign causes a new scope to begin).

main:
cmp #0,r0
bra ne,‘skip,nop
mv_s #1,r0

‘skip:
add r0,r1
rts nop

sign:
mv_s #1,r1
cmp #0,r0
bra le,‘skip,nop
mv_s #-1,r1

‘skip:
rts nop

2.5 Comments

LLAMA accepts two kinds of comments: block comments and line comments. Block
comments are identical to those found in the C programming language; they begin
with the two character sequence /* and end with the next occurence of the sequence
*/. Block comments may not be nested.

Line comments begin with either ; or // and extend to the end of the current line.

2.6 Expressions

There are a variety of kinds of expressions which LLAMA can accept; they are outlined
below. Also, any valid expression enclosed in parentheses is a valid expression as
well.

LLAMA will evaluate expressions as fully as possible when they are first encoun-
tered. Some components of an expression (for example, labels) cannot be evaluated
until a second pass, since their values are not known during the initial pass. This is
true even of labels which occur earlier in the source file than the expression be-
ing evaluated, because optimization may cause code (and hence label values) to
change. This should mostly be transparent to you, except that you cannot use such

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 9

a non-constant value in the controlling expression of a .if or .while statement.
For example:

foo:
.if foo > $20100300
.dc.s 1

.else
.dc.s 2

.endif

is invalid, and will produce an error.

2.6.1 Numbers

LLAMA accepts integer and floating point numbers in a variety of input formats.
Integer numbers in bases other than 10 may be specified in one of the following
ways:

1. As a hexadecimal number prefixed by $.

2. As a hexadecimal number prefixed by 0x.

3. As a binary number prefixed by 0b.

4. As a base r number prefixed by r$, where r is expressed as a decimal number.

Floating point numbers must be specified in decimal, and may have an optional
exponent given after e or E, e.g. the number 100.0may also be specified as 1.0e2.

Associated with every number is a scale. This is the number of bits to the right
of the decimal point in the binary representation of the number. The default, usual
scale is 0, so that for example the numbers 1, 1.1, and 1.9 are all represented
by the binary bit pattern 0b0001. Numbers with a scale other than 0 are created
with the fix function; for example, the binary bit pattern of fix(1.0,2) is 0b100.
Scaled numbers are particularly useful for doing fixed point arithmetic.

Note that the fix function does not do any rounding.

2.6.2 Boolean operators

In general, any defined, non-zero value is treated as true, and a zero or unde-
fined value is false. It is best not to rely on any use of undefined values; use the
defined function if you are in doubt as to whether a symbol may be defined or not.

v1 || v2 produces v1 if it is true, otherwise produces v2.

v1 && v2 produces false unless both v1 and v2 are true, in which case it
produces v2.

!v1 is false if v1 is true, and vice-versa.

10 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

2.6.3 Comparison operators

These all produce 1.0 if true, and 0.0 if false. Comparisons with undefined or
external symbols will produce an error.

v == v tests for equality.

v != v tests for inequality.

v < v and v <= v test for “less than” and “less than or equal to”, respectively.

v >= v and v > v test for “greater than or equal to” and “greater than”, respec-
tively.

2.6.4 Bitwise operators

All numbers are converted to integer before being used in these operations. Fixed
point numbers are scaled appropriately as part of this conversion.

v1 | v2 is a bitwise logical or.

v1 ˆ v2 is a bitwise exclusive or.

v1 & v2 is a bitwise and.

˜v1 finds the bitwise complement of v1.

2.6.5 Shift operators

All numbers are converted to integer before being used in these operations. Fixed
point numbers are scaled appropriately as part of this conversion.

v1 << v2 shifts v1 left by v2. If v2 is negative, then v1 will actually be shifted
right by -v2.

v1 >> v2 shifts v1 right by v2. If v2 is negative, then v1 will actually be shifted
left by -v2.

2.6.6 Arithmetic operators

These operators work directly on the floating point representations of the numbers,
so they are not converted to integer. Note in particular that, for example, 1/2 is 0.5,
NOT 0.

v1 + v2 finds the sum of v1 and v2. The scale of the result is the larger of the
scales of v1 and v2, so that the expression fix(2.0,10) + fix(2.0,16)
is equal to fix(4.0,16).

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 11

v1 - v2 finds the difference of v1 and v2. If v1 and v2 are both symbols in
the same section, then their difference is an absolute constant. The scale of
the result is the larger of the scales of v1 and v2, so that fix(2.0,10) -
fix(1.0,16) is equal to fix(1.0,16).

v1 * v2 finds the product of v1 and v2. The scale of the result is the sum of the
scales of v1 and v2, so that the expression fix(2.0,10) * fix(2.0,8) is
equal to fix(4.0,18).

v1 / v2 finds the (floating point) result of dividing v1 by v2. If an integer result
is desired, use the floor function. The scale of the result is the larger of
the scales of v1 and v2, so that fix(1.0,10) / fix(2.0,8) is equal to
fix(0.5,10).

-v takes the negative of v1. The scale of the result is the scale of v1.

2.6.7 Operator precedence

The precedence of the operators, in order from lowest to highest, is:

||
&&
== !=
>= <= > <
|
&
- +
* /
<< >>
! ˜ - (unary operators)

(Here operators with the same precedence are listed on the same line). Thus, for
example,

a || b+c*d&e

is parsed as:

a || ((b+(c*d)) & e).

It is often a good idea not to rely on operator precedence, but instead to use
explicit parentheses if you are at all in doubt as to how an expression will be parsed.

2.6.8 Functions

The following functions are built in to the assembler. They all accept floating point
parameters and produce a floating point result. They generally preserve the scale of
their first arguments. For example cos(fix(0.5,16)) produces the same result
as fix(cos(0.5),16). An exception is the float function, which ignores its input
scale and always produces an integer with scale 0 (the 32 bit integer which is the
IEEE single precision representation of the floating point input number).

12 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

Function Name Meaning
abs(x) absolute value
acos(x) arccosine
addrof(x) returns the address of an I/O register
asin(x) arcsine
atan2(x1,x2) arctangent
ceil(x) rounds x upwards to the nearest integer
cos(x) cosine
defined(sym) returns 1.0 if sym is defined, 0.0 otherwise
dtor(x) convert degrees to radians
exp(x) e raised to the x
fix(x,fracBits) convert real to fixed with fracBits fraction bits
float(x) IEEE single precision binary representation

of x
floor(x) rounds x downwards to the nearest integer
integer(x) converts a fixed point number to its integer

representation
log(x) log (base is e)
log2(x) log (base is 2)
pi() pi
pow(x,power) raise x to power
rottor(x) convert rotations to radians
rtod(x) convert radians to degrees
rtorot(x) convert radians to rotations
sin(x) sine
sqrt(x) square root
tan(x) tangent

2.7 Predefined Symbols

In addition to the standard set of registers, I/O addresses, and so on, LLAMA prede-
fines the following symbols:

Symbol Name Value
LLAMA VERSION the version number of the running assembler
LLAMA OPTIMIZE the level of optimization specified with -O, or 0 if

not optimizing
NUON VERSION 0 for alpha, 1 for beta silicon

Moreover, there are some special “macro” like facilities similar to ones provided
by the C preprocessor:

Symbol Name Value
FILE a string containing the name of the file currently

being processed
LINE a number giving the current line number

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 13

Unfortunately, the LINE macro is of limited use; it probably would be nice to
have a way to make it into a string.

2.8 Conditional Assembly

LLAMA supports conditional assembly via the .if and .while directives. Both of
these work in a very straightforward way. Both directives are followed by a boolean
expression; this is simply an ordinary expression which is evaluated. If it evaluates
to a non-zero value, it is considered to be true. If it evaluates to 0, it is considered
to be false. If the expression cannot be evaluated (for example, if it contains an
undefined symbol) then it is considered to be false. Note that at assembly time, the
values of labels are not known; labels are not resolved until a later pass. Therefore,
any expression containing a label will evaluate to false, or will produce an error.
For example,

foo:
.if foo

.dc.s 1
.else

.dc.s 2
.endif

will always output the constant 2.
LLAMA does not have a .ifdef directive; in its place use the defined function.

For example:

.if defined(bar)
.dc.s 1

.else
.dc.s 0

.endif

will output 1 if bar is defined, and 0 otherwise.
The expression in a .while directive is re-evaluated each time through the loop.

The value of the expression must be changed by some directives inside the loop.
In order to prevent infinite loops, LLAMA will abort any loop that executes more than
65536 times and will print an error message.

Example:
To generate a table containing the numbers from 1 to 100, you could use:

_ii = 1
.while _ii <= 100

.dc.s _ii
_ii = _ii + 1

.end

At the end of this .while loop, the variable ii will have the value 101.
Note that the -fasm output format expands the results of conditonal assembly,

so no .if or .while loops will be preserved when using this format. See limitations
of assembly language output (section 4.3.1) for more details.

14 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

2.9 Macros

The macro facility in LLAMA is still under development, and is in a preliminary state
right now. There are no facilities for token pasting in macros, so it is not possible
(for example) to use a macro to construct an identifier from expressions. It is also
not possible to use a macro with a variable number of arguments. Expansion of
macro arguments does not take place within before or after methods, or inside
of strings.

We hope to correct these problems in a future release of LLAMA. In the meantime,
macros can be used for relatively simple purposes, for example to provide aliases for
some instruction forms or to encapsulate simple sequences of instructions.

Example: a macro to hide the nop form of jump:

.macro jump place
jmp place,nop

.mend

Example: a macro to set the value of a variable:

.macro setit foo,x
foo = x
.mend

Example: a macro to shift left by a positive constant, or right by a negative con-
stant:

;; a macro to shift a register left by the
;; constant value "x"
;; if x < 0, shift it right instead
.macro shli x,rj
.if (x < 0)

lsr #-x,rj
.else

lsl #x,rj
.endif
.mend

Note that in the last example, the macro must be used like:

shli 5,r0

rather than like:

shli #5,r0

because the latter form would cause the .if within the macro body to expand to:

.if (#5 < 0)

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 15

which is not syntactically legal.
Syntactically, the formal argument name within a macro is simply an identifier.

Macro argument names are looked for before opcode or symbol lookup, so it is pos-
sible for a macro argument to have the same name as an existing opcode or symbol.
Beware of code like:

.macro jump_and_inc addr
{ addr #2,rx

jmp addr,nop
}
.mend

Here the string addr will always be replaced with the argument to the macro, and
hence the instruction addr will not be found; most likely a syntax error will result.

Note that the -fasm output format prints the results of macro expansion, so
no macro definitions or invocations will be preserved when using this format. See
limitations of assembly language output (section 4.3.1) for more details.

Note also that the scope of local symbols (section 2.4) (those beginning with a
backquote character) is restricted to the macro body. This can make local symbols
quite useful within macros.

16 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

3. Directives
The assembler recognizes a number of directives. The before and after direc-
tives were discussed earlier in the section on instruction packets (section 2.1.2).
These directives must occur inside of instruction packets.

The .if, .else, and .endif directives may appear either inside or outside
of instruction packets. All other directives discussed below must occur outside of
instruction packets.

3.1 .align

.align modulo
Sets location to next multiple of modulo bytes. The number modulo will in fact be
rounded up to the next largest power of 2, so that

.align 5

is identical in effect to

.align 8

Alignments stricter than 32768 bytes are not supported.

3.2 .align.s

.align.s
Sets location to the next scalar (32 bit) boundary. Same as “.align 4”.

3.3 .align.sv

.align.sv
Sets location to the next small vector (64 bit) boundary. Same as “.align 8”.

3.4 .align.v

.align.v
Sets location to the next vector (128 bit) boundary. Same as “.align 16”.

3.5 .alignlog

.alignlog n
Sets location to the next multiple of 2n bytes. Same as “.align 1<<n”.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 17

3.6 .ascii

.ascii ”string”
Defines an ASCII string. Within the string, the following escape sequences are rec-
ognized:

\" a double quote
\\ a backslash
\nnn where nnn is 3 octal digits: the character with the given (octal) ASCII rep-

resentation
A trailing zero, if desired, must be explicitly given with \000.

3.7 .asciiz

.asciiz ”string”
Defines a zero terminated ASCII string; other than the automatically added terminat-
ing zero, this is identical to the .ascii directive.

3.8 .binclude

.binclude ”filename”
Includes the contents of filename as literal binary data. The program counter is
aligned to a multiple of 4 bytes before the file is included, and the file is padded with
0’s to occupy a multiple of 4 bytes in the output. See the discussion of .include for
details on the search path for included files.

3.9 .bss

.bss
Sets current output to the bss section (section 3.48). Same as “.section bss”.

3.10 .byte

.byte data [,data ...]
Defines one or more items of single byte (8 bit) data. Same as .dc.b.

3.11 .cache

.cache
Forces padding to be inserted to allow code to run from cache. This occurs even if no
-c flag was given on the command line. .cache overrides any previous .nocache
directive. The padding used is taken from the -c flag on the command line; if no
explicit padding size was specified (or no -c was given) then a default cache line
size of 32 bytes is assumed.

18 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

The .cache directive also causes the assembler to assume that any undefined
(external) symbols are in cached memory. For example, jmp or jsr instructions
where the target is at an unknown address will be assembled in the long form which
permits an arbitrary 32-bit address.

3.12 .comm

.comm symbol,length [,alignment]
Declares a named common area. symbol will be created as a global symbol, and
the linker will put it in the common area. The size of the symbol (amount of space re-
served for it) will be determined by the linker as the maximum of the length operands
given in all of the .comm directives in the files linked together. The alignment of the
symbol will also be determined as the maximum of all of the alignment directives
specified. Omitting alignment from a .comm directive is the same as specifying an
alignment of 1 byte.

Note that alignment must be a power of 2, and may be at most 32768 bytes.

3.13 .data

.data
Sets current output to the data section (section 3.48). Same as “.section data”.

3.14 .dc.b

.dc.b data [,data ...]
Defines one or more items of single byte (8 bit) data.

3.15 .dc.s

.dc.s data [,data ...]
Defines one or more items of scalar (32 bit) data. Alignment is forced to a scalar
boundary.

3.16 .duc.s

.duc.s data [,data ...]
Defines one or more items of scalar (32 bit) data. Alignment is not forced to any
boundary.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 19

3.17 .dc.sv

.dc.sv data [,data ...]
Defines small vector (64 bit) data. Each element of the small vector is a 16 bit word,
so .dc.sv is similar to .dc.w, except that alignment is forced to a 64 bit boundary
instead of a 16 bit boundary.

Note that although each small vector contains 4 elements, .dc.sv does not
actually check the number of elements given.

3.18 .dc.v

.dc.v data [,data ...]
Defines vector (128 bit) data. Each element of the vector is given as a scalar (32 bit)
word.

Note that although each vector contains 4 elements, .dc.v does not actually
check the number of elements given. Thus, it is exactly the same as the .dc.s
directive, except that alignment is forced to a vector boundary.

3.19 .dc.w

.dc.w data [,data ...]
Defines one or more items of word (16 bit) data.

3.20 .duc.w

.dc.w data [,data ...]
Defines one or more items of word (16 bit) data. Alignment is not forced to any
boundary.

3.21 .ds.b

.ds.b num
Defines space for num bytes of data. No alignment is imposed.

3.22 .ds.s

.ds.s num
Defines space for num scalars of data. Each scalar is 32 bits. Output is aligned to a
32 bit boundary.

20 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

3.23 .ds.sv

.ds.sv num
Defines space for num small vectors of data. Each small vector is 64 bits. Output is
aligned to a 64 bit boundary.

3.24 .ds.v

.ds.v num
Defines space for num vectors of data. Each vector is 128 bits. Output is aligned to
a 128 bit boundary.

3.25 .ds.w

.ds.w num
Defines space for num words of data. Each word of data is 16 bits. Output is aligned
to a 16 bit boundary.

3.26 .else

.else
Optionally goes with .if; terminates the “if” part of the conditional assembly and
starts a new part with the opposite sense. See the section on conditional assembly
(section 2.8) for details.

3.27 .end

.end
Closes a .if or .while. See the section on conditional assembly (section 2.8) for
details.

3.28 .endif

.endif
This is a synonym for .end. It is intended to be used to terminate a .if block, but
it can actually be used anywhere .end can be. We do not recommend its use for
anything but terminating a .if (with optional .else) block.

3.29 .error

.error ”msg”
Specifies an error condition, and prints the string msg as an error message. This is

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 21

commonly used in .if blocks to detect conditions which will prevent proper assem-
bly. For example, if some code requires version 2.60 or later of LLAMA it would be a
good idea to prefix it with a test like:

.if LLAMA_VERSION < 2.60

.error "llama 2.60 or later required for this code."

.endif

3.30 .export

.export name [,name ...]
Declares one or more names as global and visible to other object files and modules
(see .module). A label may also be exported by following it with two colons (“::”)
instead of one.

3.31 .float

.float num [,num ...]
Defines one or more four byte IEEE single precision floating point numbers.

3.32 .include

.include ”filename”

.include ”prefix” ”filename”
Includes the source file filename. The following directories are searched, in the order
listed:

1. The current directory.

2. In any directories specified by -I options on the command line, in the order
given on the command line.

3. In the directories specified in the LLAMA PATH environment variable, if one is
found. This is the same as PATH – a semicolon separated list of directories.

4. In the include subdirectory of the directory pointed to by VMLABS, if that
environment variable is defined.

5. Under Windows: in the ..\include directory relative to where LLAMA is on
the disk. That is, if LLAMA is started as C:\VMLABS\BIN\LLAMA.EXE, then
the directory C:\VMLABS\INCLUDE is searched for include files.

If a prefix string is given, then the debugger will show that prefix in front of the
file name. This is useful when the same file is to be included multiple times, for ex-
ample in different overlays; the prefixes can then be used to distinguish the different
instantiations of the file.

22 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

3.33 .if

.if bool-expr
If false, assembly is suppressed until the next matching .else or .end. See the
section on conditional assembly (section 2.8) for details.

3.34 .ifdef

.ifdef SYMBOL
This is an alternate form of .if and is exactly equivalent to:

.if defined(SYMBOL)

3.35 .ifndef

.ifndef SYMBOL
This is an alternate form of .if and is exactly equivalent to:

.if !defined(SYMBOL)

3.36 .import

.import name [,name ...]
Declares one or more names as global and imported from another module or object
file. This directive is required to import names from another module (see .module)
but is optional when referring to symbols from a different object file.

3.37 .lcomm

.lcomm symbol,length [,alignment]
Declares a named common area in the .bss section. The symbol is entered as
local to this object file (not global). The alignment of the symbol (in bytes) may be
explicitly specified. If no alignment is specified, then scalar alignment is assumed,
unless length is a known constant less than 3, in which case the length determines
the alignment.

3.38 .linkbase

.linkbase expr

.linkbase expr,maxsize
Defines the base address to be used for sections without a .origin directive. In
this respect it is similar to the -B command line option. However, the .linkbase
directive also has an optional argument specifying the maximum total size of all sec-
tions placed starting at the given address. If the total size of overlays (and any other

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 23

sections whose load time addresses are determined by the assembler, rather than
given explicitly) exceeds the specified maximum, an error is generated.

Please note that this directive is not passed to the linker, so .linkbase has no
effect if LLAMA is not doing the link step (for example, if a non-executable COFF file
is being created which will be passed to a linker).

3.39 .macro

.macro name [param1 [,param2 ...]]
Begins a macro definition. See the macros section (section 2.9) for details.

3.40 .mend

.mend
Ends a macro definition. See the section on macros (section 2.9) for details.

3.41 .module

.module name

.module
Creates a new namespace. Symbols defined within a module will be prefixed by
the module name, so that they do not conflict with other symbols with the same
name in other modules. If name is omitted, then the symbols will have global scope
again. A .module directive lasts until the end of the current file, or until the next
.module directive. Symbols from a module that are intended to be used by other
modules must be made global with a .export directive, and to reference symbols
from another module a .import directive must be used.

To refer in the debugger to symbol foo from module bar, use the name bar%foo.

3.42 .nocache

.nocache
Directs that padding should no longer be inserted in code to allow it to run in cached
mode. Obviously, one should take care not to use this directive in code that may be
run in a cached processor! This directive overrides any previous .cache directive or
-c command line switch, and is in turn overridden by a following .cache directive.

.nocache also causes the assembler to assume that any undefined (external)
symbols are in local memory. This applies to both data and instruction references.

3.43 .nooptimize

.nooptimize
Begins a section of code that the assembler should not attempt to optimize. This

24 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

section is terminated by a matching .optimize directive. The .nooptimize and
.optimize directives nest, so that two consecutive .nooptimize directives re-
quire two .optimize directives before optimization will again be permitted.

3.44 .optimize

.optimize
Ends a section of code that should not be optimized, and may allow optimization to
begin again. Has no effect unless a -O flag was given to LLAMA. That is, .optimize
states that optimization is permitted, but it does not actually force optimization to
occur; only the -O command line flag activates optimization.

3.45 .origin

.origin expr
Specifies the origin for a section. At most one .origin directive should be present
in any given section.

If a section is not given a .origin, then it will either be output as a relocatable
section (if the output format is relocatable, for example if the -fcoff option was
given) or else it will be assigned a load address by the assembler. The -B option or
.linkbase directive may be used to control where such sections will be loaded.

The local ram section has a default origin of 0x20100000. Similarly, the
instruction ram section has a default origin of 0x20300000.

3.46 .overlay

.overlay section name

.overlay section name, maxsize
This specifies a section which will be used as an overlay. The initial (load time)
location of the overlay in SDRAM or system RAM will be assigned by the linker (for
COFF output files), or may be specified with the -B flag or .linkbase directive for
other output formats. The run-time code location must be given with a .origin
directive. See Overlays (section 5) for more information on overlays.

A maximum size that will be allowed for an overlay may optionally be specified as
a second argument for .overlay. If the size of the overlay exceeds this maximum
size, then an error will result. Size checking is performed only when the assembler
is producing executable output; for relocatable COFF object files the linker must be
used to check section sizes.

The .overlay directive is identical to the .section directive, except that it may
also arrange for overlay specific debugging information to be placed in the output file
(if the output file format supports this).

The section name argument may have at most 8 characters. This is a restriction
imposed by the COFF file format, but it applies regardless of what kind of output is
actually being produced.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 25

It is not necessary for all code and/or data in an overlay to be contiguous in the
source code; for example, it is perfectly legal to have code like:

.overlay foo,128
sub r1,r0

.overlay bar
mv_s #0,r0

.overlay foo
cmp #0,r0

.overlay bar
st_s r0,bar_data

The above snippet of code has the same effect as:

.overlay foo,128
sub r1,r0
cmp #0,r0

.overlay bar
mv_s #0,r0
st_s r0,bar_data

3.47 .revision

.revision number
Specifies the version of the instruction set mnemonics (section 2.1) and forms to use.

This is useful mainly for supporting old code which used different conventions for
the NUON assembly language.

.revision 19 specifies the initial version of the assembly language, as speci-
fied in revisions 19 and 20 of the assembly language manuals.

.revision 20 is the same, except that the immediate shift values 8, 14, and
16 used by the dotp, mul p, and mul sv instructions should have 16 added to them
(to make the shifts relative to a complete 32 bit number). The old shift values are still
accepted but give warnings. In addition, warnings are issued for addr instructions
with small immediate constants.

.revision 21 is similar to .revision 20, except that warnings are no longer
issued for addr instructions with small constants; instead, these are assembled to
actually add the literal immediate used. This will break old code which expects the
small constants to be shifted left by 16 before use. Also, the small vector shift value
16 is now interpreted as a 32 bit shift, so it now means the same as the old shift
value of 0.

The assembler now (as of version 2.20) defaults to .revision 21.

26 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

3.48 .section

.section name

.section name, maxsize
Sets current output to the section named name. This may be one of LLAMA’s pre-
defined sections (which are text, data, bss, dtram, dtrom, iram, irom, and
sdram) or it may be a completely new name, in which case a new section will be
created. Note that this means that a spelling mistake in a .section directive will
not be flagged by the assembler, but could result in unexpected behaviour.

A maximum size that will be allowed for a section may be optionally be specified
as a second argument for the .section directive. If the size of the section exceeds
this maximum size, then an error will result. Size checking is performed only when
the assembler is producing executable output; for relocatable COFF object files the
linker must be used to check section sizes.

Only the first 8 characters of the name argument are significant. However, for
backwards compatibility certain long names are automatically translated into shorter
names, as follows:

Long Name Short
Name

Meaning

instruction ram iram MPE local instruction RAM
instruction rom irom MPE local instruction ROM
local ram dtram MPE local data RAM
local rom dtrom MPE local data ROM
external ram sdram SDRAM

Please note that the sdram section is not understood by the linker; it is placed
into SDRAM automatically only if the assembler is doing the link.

The C compiler makes use of the following sections:

Name Meaning
text program code and constants
data initialized data
bss uninitialized data
comm uninitialized data (obsolete, use bss instead)
heap memory to be allocated by malloc
ctors C++ constructor functions
dtors C++ destructor functions
intdata data in internal MPE memory

User defined sections will probably be used most often for overlays (section 5).
In this case one should use the .overlay variant of the .section directive, since
it sets some flags in the object file which the debugger can use.

It is not necessary for all code and/or data in a section to be contiguous in the
source code; for example, it is perfectly legal to have code like:

.section foo
sub r1,r0

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 27

.section bar
mv_s #0,r0

.section foo
cmp #0,r0

.section bar
st_s r0,bar_data

The above snippet of code is identical to:

.section foo
sub r1,r0
cmp #0,r0

.section bar
mv_s #0,r0
st_s r0,bar_data

3.49 .segment

.segment name

.segment name, maxsize
This is a synonym for .section.

3.50 .start

.start symbol
Specifies a starting location for execution (i.e. the program’s entry point). This direc-
tive has useful effects only for the MPO output format (and hence it is obsolete). For
COFF output formats the execution start address is set by the linker.

3.51 .text

.text
Sets current output to the text section. Same as “.section text”.

3.52 .warn

.warn ”message”
Prints the indicated message on the standard error output as a warning. This is
similar to .error, but does not cause assembly to be halted.

28 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

3.53 .while

.while expr
While the expression is true (nonzero), repeatedly assembles lines up to the next
.end directive. See the section on conditional assembly (section 2.8) for details.

3.54 .word

.byte data [,data ...]
Defines one or more items of single word (16 bit) data. Same as .dc.w.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 29

30 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

4. Optimization

4.1 General

If LLAMA is given the -O option, it will optimize the input code. To do this, it tries to
move instructions as far ahead in the instruction stream as possible. It never moves
instructions backwards, only forwards; this simplifies some of the algorithms, but
obviously this does cause some optimizations not to be performed. The main goal
of LLAMA has been safety (it should not take a valid assembly language program
and produce an invalid one) rather than performance, and so some optimizations
are foregone for safety’s sake.

When moving instructions, LLAMA will also try to substitute equivalent instructions
that use a different function unit. For example, it will interchange the equivalent
forms of add and addm, sub and subm, and copy and mv s. It will also substitute
sub rn,rn for mv_s #0,rn, and mul #1,rn,>>#-A,rn for lsl #A,rn.

LLAMA keeps track of dependencies, including condition codes produced. It will
never move an instruction past another instruction which changes a resource which
the first instruction depends on, nor will it schedule instructions so that resources
conflict (e.g. placing a mv instruction immediately after a ld). It also tries to detect
such conflicts in the input file and issue warnings about them; however, if the in-
put code contains such conflicts, it is possible that LLAMA may not notice and will
reproduce them in the output.

LLAMA is not very clever about branches, and is extremely cautious about pre-
serving register contents and condition codes across branches and subroutine calls.
Some of its cautiousness can be relaxed with the -b flag. If -b is given, then LLAMA

assumes that the code following any branch will not use condition codes generated
before the branch. This is in fact a common case for hand written assembly code.

The difference can be shown by example. Given the input sequence:

{ add #2,r2
mv_s r1,r0

}
{ mv_s r2,r3

jsr foo
}

mv_s r4,r5
mv_s r6,r7

LLAMA will ordinarily not be allowed to change any of the mv s instructions into
a copy instruction, because theoretically the foo subroutine might use some of the
flags set by the add instruction. The -b flag tells LLAMA that it’s OK to assume
that flags will not be used after any branch, and so in the example above it will be
permitted to change mv s instructions into copy instructions.

Note that gcc does instruction scheduling into delay slots, so in fact it is danger-
ous to use -b with compiled code!

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 31

4.2 Optimization of Binary Code

There are two ways to use LLAMA to optimize your code. LLAMA can simply optimize
the code as it assembles, and produce optimized binary output (this will be the default
action if you give a -O flag); or, you can specify that you want to see the resulting
(optimized) assembly language by giving the -fasm option to LLAMA.

Producing optimized binary code is certainly the simplest method, and is suitable
for production use on already debugged code. If asked to optimize code that is being
produced in a binary output format (e.g. -fmpo or -fcoff) then LLAMA will perform
the optimizations automatically and produce an optimized binary executable. Note
that because optimization typically involves moving instructions to new packets, and
sometimes eliminating instructions or packets altogether, the debugger is likely to
become quite confused if asked to single step through an optimized function. For
this reason, if you plan to debug the code you should either forgo optimization, or do
the optimization “by hand” by asking for assembly language output with -fasm and
then merging LLAMA’s changes back into your code, as described below.

4.3 Assembly Language Optimization

You can use LLAMA as a tool to assist you in optimizing your assembly language
code. If LLAMA is given the -fasm output format option, then it will produce a (some-
what readable) assembly language output version of its input. You can look at this
code, compare it to your original, and use LLAMA’s suggestions to improve your code.

There are several options which can be helpful in this task. The -i option allows
you to include a file, which will not appear in the resulting assembly language output.
This allows you to optimize a small piece of a larger program. For example, suppose
that project.s is the top level file for some project, which consists of:

.include "baz.i"

.include "bar.s"

.include "quux.s"

If you wish to optimize just the file quux.s, you should use the command line:

llama -fasm -O2 -o quux_new.s -i baz.i
-i bar.s quux.s

This tells LLAMA to include the baz.i and bar.s files before attempting to pro-
cess quux.s. If we didn’t do this, then there would likely be undefined symbols
(anything defined in baz.i or bar.s that was used in quux.s).

Another way of avoiding such undefined symbols is to use the -D directive to
define the symbol. For instance, if in the example above the only symbol from baz.i
or bar.s that was used in quux.s was a symbol called baz, with some constant
value, then we could have written:

llama -fasm -O2 -o quux_new.s -Dbaz quux.s

32 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

If we knew that, for example, baz had the value 0, then we could have written:

llama -fasm -O2 -o quux_new.s -Dbaz=0 quux.s

The -D option only works for constant value symbols; it is not possible to define
a register symbol in this way. If no explicit value is given with -D, LLAMA assumes
a value of $deadbeef; this is because small values (especially 0) may be treated
specially by the assembler, so in the absence of an explicit value LLAMA must assume
that the symbol may require 32 bits to hold it.

4.3.1 Limitations of assembly language output

When doing assembly language output, LLAMA actually assembles the program into
an internal format, optimizes it, and then disassembles the result. This has a number
of consequences which you should be aware of:

1. LLAMA tries to keep comments with the instructions to which they refer, but it
isn’t always successful at this. You should double check that the comments in
the output code make sense, and that none are missing.

2. Conditional assembly directives, and macro definitions are not preserved, and
are instead expanded into their final form. So, for example, the code fragment:

.if 1
add #1,r0

.else
sub #2,r0

.endif

will be output by LLAMA as simply:

add #1,r0

3. Constants in .dc.s and similar directives may be expanded to their final form,
e.g.

foo = $10
.dc.s foo

may be output as:

.dc.s 16

For all of these reasons, it is important that you examine LLAMA’s output and
merge its suggested changes into your source code (or vice-versa), rather than sim-
ply having LLAMA overwrite the original source.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 33

34 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

5. Overlays

The LLAMA assembler and the VM Labs linker can work together to create code
overlays. The general procedure may be summarized as follows. For each piece
of code or data that is to be overlaid, create a new assembler section using the
.overlay directive. The overlay section must have a unique name of 8 characters
or less. Each overlay section should have a .origin directive giving the location
where the code is to run (NOT where it is to reside in memory while not active). The
linker can then be used to link these sections into RAM or ROM. Note that:

1. The linker doesn’t care where the overlays will actually run; it is only concerned
with their “load time” location (where the code lives when it isn’t active).

2. The assembler doesn’t care about “load time” location, only run time.

3. Some piece of code is going to have to do the actual loading of the overlay
code into an MPE, and start the overlay running.

The last task is simplified somewhat by the linker’s automatic variable facility. For
any section foo, the linker creates symbols named foo start and foo size
which give the start address and size for the section as it appears in the load map
(not the run time addresses). Also note the prepended underscore; this is for C
compatibility.

Example:
Suppose we have two pieces of code, with associated data, which will run in an

MPE and which will be loaded into MPE instruction memory at address 0x20300800.
Then we might do something like the following:

.overlay code1

.origin $20300800
;; put first bit of MPE code here

.overlay data1

.origin $20100000
;; put data for first bit of MPE code here

.overlay code2

.origin $20300800
;; put second MPE overlay code here

.overlay data2

.origin $20100000
;; put data for second MPE overlay here

...

;; here is where we load overlay 1

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 35

;; the load_overlay function takes
;; the following parameters:
;; r0 == external address of code
;; r1 == size of code (in bytes)
;; r2 == run time address for code

;; import symbols defined by linker
.import _code1_start,_code1_size
.import _data1_start,_data1_size

mv_s #_code1_start,r0
mv_s #_code1_size,r1
mv_s #$20300800,r2
jsr load_overlay,nop

mv_s #_data1_start,r0
mv_s #_data1_size,r1
mv_s #$20100000,r2
jsr load_overlay,nop

....

;; A similar procedure would be used for
;; the code2 and data2 sections

Note also that although we chose fixed addresses for our overlays in the example
above, the .origin directive can be used with labels. The only restriction is that
code overlays must start on a vector boundary.

36 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

6. Interfacing C and Assembly

6.1 Calling Conventions

Assembly language functions which are to be called from C must obey the following
guidelines:

1. The first ten arguments are passed in registers r0 through r9. Other argu-
ments are passed on the C stack (pointed to by r31.

2. The C stack pointer is general purpose register r31. The hardware stack
pointer sp is reserved for interrupt purposes. Note that the C stack grows
downwards (predecremented), and must always be vector aligned. Assembly
language code must preserve the sp register, and may use push and pop
instructions (but should not assume that the stack is larger than 128 bytes).

3. The function’s return value should be placed in r0. 64 bit values are returned
in r0 and r1.

4. The function may modify general purpose registers r0 through r11, and gen-
eral purpose register r29. The other general purpose registers (r12 through
r28 and r30 through r31) must be preserved.

5. I/O registers concerned with bus transfers (the main bus DMA registers, other
bus DMA registers, and comm bus registers) may be modified.

6. The rc0 and rc1 registers may be modified by the called function, and need
not be preserved.

7. All other registers should be preserved, including (in particular) the sp and
acshift registers.

8. C callable functions must be assembled to use the cache, in its default con-
figuration (32 byte lines). This may be done with the -c flag to LLAMA, or by
putting the .cache directive into the code. No direct references to MPE in-
struction RAM or MPE data RAM should be made without care being taken to
flush the cache first. This is particularly of concern when the assembly lan-
guage code wishes to issue DMA commands, since these always use an MPE
internal address.

9. If the assembly language function is to call a C function, it must be aware that
the C function may change registers r0 through r11, and also r29 (which is
used by the C compiler to perform linkage).

6.2 Header Files

As of version 2.62, LLAMA can understand a limited number of C programming lan-
guage constructs and preprocessor directives. This allows certain (carefully con-
structed) header files to be used by both C and assembly.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 37

The C preprocessor directives understood by LLAMA are blindly translated into
LLAMA equivalents. If the resulting expressions are not valid assembly language
directives, a syntax error will result.

#define Translated into a symbol definition. Only simple arithmetic expressions
may be defined; #define may not be used to define macros or strings. A line
like:

#define FOO

is translated by LLAMA into:

FOO = 1

A line like:

#define BAR (BAZ+QUUX)

is translated by LLAMA into:

BAR = (BAZ+QUUX)

#else Translated into .else.

#endif Translated into .endif.

#error Translated into .error.

#if Translated into .if. Note that the expression to be evaluated will be evaluated
according to LLAMA’s rules; these are very similar to C, but some C operators
(like sizeof) are not available in LLAMA.

#ifdef Translated into .ifdef.

#ifndef Translated into .ifndef.

#include Translated automatically into .include. Note that the search path used
by LLAMA may differ from that used by the C compiler; see the discussion of
.include for how LLAMA finds files. Also note that the argument to #include
must be in quotes; in other words

#include <foo>

will not work.

#line This directive is ignored.

#pragma This directive is ignored.

38 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

Besides the preprocessor directives, LLAMA can also understand a particularly
limited version of the C enum statement. If every element of the enumeration appears
on a separate line, and each one is assigned an explicit value, then LLAMA will create
symbols with the names of the enumeration tags and with the assigned values. That
is,

enum {
a=1,
b=2

};

will be accepted by LLAMA and translated as:

a = 1
b = 2

However, the equivalent (in C) declaration:

enum {
a=1,
b

};

is not understood by LLAMA and results in a syntax error.

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 39

40 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

7. Bugs and Shortcomings

7.1 Bugs

These are known bugs, i.e. they can cause LLAMA to produce invalid output under
certain circumstances.

1. The st s immediate instruction allows for relocation only in the immediate
value, not in the address; that is, in

st_s #nnnn,labelC

the assembler must know the address of labelC.

2. LLAMA does not resolve labels until its final pass; as a result, it must initially
assume that operands involving labels may require 32 bits. This can lead to
spurious errors about too many instructions in a packet using the 32 bit instruc-
tion prefix. It can also (sometimes) lead to a spurious “packet too large” error
for packets containing a short (16 bit) branch which are exactly 128 bits in size.
These latter errors are very rare.

3. LLAMA assumes that external subroutines do not end with two tick operations. If
this is not true of a subroutine, then under certain circumstances LLAMA might
re-schedule instructions to use the result of a subroutine before it is ready.
Obviously this bug is only a potential hazard if optimization is enabled, and
only if LLAMA hasn’t seen the actual subroutine definition itself and hence can’t
determine whether the subroutine contains a two tick operation.

4. Labels may not appear inside of packets. This is in fact a very difficult prob-
lem to solve, and it’s possible that LLAMA will never allow this, even though
(theoretically) the NUON media architecture will allow it.

7.2 Shortcomings

These are annoying problems with LLAMA that are short of actual bugs.

1. -O2 and higher levels of optimization are slow; -O3 and higher are excruciat-
ingly slow and not really much better.

2. Although LLAMA will convert mv_s #0,r0 into sub r0,r0, it won’t try the
obvious alternate subm r0,r0,r0 for this particular instruction.

3. There are a number of limitations in the -fasm output format; see the section
on assembly language optimization (section 4.3.1) above.

4. Macros are still quite limited; see the macros (section 2.9) section for some
details.

5. LLAMA consumes quite a bit of memory to run; it may take up to 1K bytes of
memory for each line it processes (usually it’s less than this!).

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 41

42 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

8. Error Messages

The assembler can generate a number of warning and error messages which may
seem cryptic. Here are some explanations of some of these:

8.1 Unable to find previous instruction packet for padding

This warning message from the assembler is harmless. Some instructions must be
aligned in particular ways; for example, no instruction can cross a cache line bound-
ary. The assembler forces alignment by inserting padding into instruction packets.
This padding uses space, but does not take any time to execute. The operation
of padding is normally transparent, but there are some times when the assembler
needs to insert padding to force alignment but is unable to find a packet to insert
the padding into. For example, this can happen if some data has been inserted in
the middle of code. In these circumstances, the assembler is forced to insert a nop
instruction. The warning informs the user that this has happened. It’s useful for an
assembly language programmer, since the extra nop instruction adds a tick, which
could be a problem in a carefully crafted inner loop.

8.2 Cache stall may cause repeated read/write to register

This is a warning about a bug in the beta hardware that can cause problems with
accesses to certain volatile registers. If the instruction that causes this warning is in
a branch delay slot, move it out of the delay slot. If it is in a large packet, try moving
it to a smaller packet or make it an instruction all on its own. If all else fails, insert
one or two nop instructions before the offending instruction.

8.3 Obsolete instruction form

The syntax for the addr instruction changed in order to accomodate some new in-
struction semantics which became possible late in the design of the chip. The old
syntax took

addr #1,rx

to mean “add 1 in 16.16 fixed point format to rx”. However, it is in fact possible to
add an arbitrary 32 bit constant using addr, and so an ambiguity arose; how could
we specify adding small literal constants? As of revision 20 of the instruction syntax,
the addr instruction always takes a 32 bit constant, so the example above should
become:

addr #1<<16,rx

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 43

8.4 Obsolete shift

There are several instructions (for example, mul sv) which operate on small vectors,
which are the upper 16 bits of each of four consecutive registers. Because only 16
bits were involved in the operation, the original assembly language syntax treated
all shifts as being “16 bit”, that is, considering only the bits involved in the operation.
However, since the small vectors occupy the upper 16 bits of registers, this can
be confusing. Other multiply operations have shift counts relative to the full 32 bit
registers. For consistency’s sake, and to allow for future expansion of the instruction
set, the assembly syntax has been changed for revision 20 of the instruction set to
make the small vector operations use full 32 bit shifts. During the switch over the
assembler will accept old forms but issue warnings. It is important to correct the
warnings, because there is one ambiguity (the old shift of 0 will become 16, which
conflicts with the old shift of 16 which has become 32). Follow the assembler’s
instructions and your code should be OK.

8.5 Local access following remote load may trigger cache
bug

The beta version of the Nuon media processor (aka “Oz”) has a number of cache
bugs. One of these is that if a load instruction causes a cache miss and the next in-
struction is an access to local memory (including any memory-mapped register), then
the MPE will hang indefinitely. Since only indirect loads can cause cache misses, the
assembler flags any local memory access following an indirect mode if the cache is
active (the -c flag or a .cache directive was given). If you’re sure that the indi-
rect load will not cause a cache miss, then you may be able to indicate this to the
assembler by using the ld io instruction instead of ld s or ld v.

Unfortunately, these cache bugs were not fixed in the “Aries” version of the chip,
and remain a problem.

44 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

Index

.align, 17

.align.s, 17

.align.sv, 17

.align.v, 17

.alignlog, 17

.ascii, 18

.asciiz, 18

.binclude, 18

.bss, 18

.byte, 18, 29

.cache, 2, 18, 19, 24, 37

.comm, 19

.data, 19

.dc.b, 18, 19

.dc.s, 19, 20

.dc.sv, 20

.dc.v, 20

.dc.w, 20, 29

.ds.b, 20

.ds.s, 20

.ds.sv, 21

.ds.v, 21

.ds.w, 21

.duc.s, 19

.else, 17, 21, 23, 38

.end, 21, 23, 29

.endif, 17, 21, 38

.error, 21, 28, 38

.export, 3, 22, 24

.float, 22

.if, 10, 14, 15, 17, 21–23, 38

.ifdef, 23, 38

.ifndef, 23, 38

.import, 3, 23, 24

.include, 3, 4, 18, 22, 38

.lcomm, 23

.linkbase, 1, 23–25

.macro, 24

.mend, 24

.module, 3, 8, 22–24

.nocache, 2, 18, 24

.nooptimize, 24, 25

.optimize, 25

.origin, 1, 23, 25, 35, 36

.overlay, 25, 35

.revision, 5, 26

.section, 18, 19, 25, 27, 28

.segment, 28

.start, 28

.text, 28

.warn, 28

.while, 10, 14, 21, 29
FILE , 13
LINE , 13, 14

float, 12
addr, 7
after, 8
before, 8
external ram, 27
instruction ram, 27
instruction rom, 27
local ram, 27
local rom, 27

addr instruction, 43
after method, 8
alignment, 43
alpha, 13
assembler, 43, 44
assembly listing, 2

before method, 8
boolean expression, 14
bugs, 33, 41

C calling converntions, 37
C language, 27, 37
cache, 2, 43, 44
calling conventions, 37
comments, 9
condition codes, 1
conditional assembly, 14, 33

enum, 39
error file, 2

floating point, 10, 22
functions, 12

hexadecimal number, 10

6/11/2001 VM LABS CONFIDENTIAL PROPRIETARY 45

identifiers, 8
include search path, 18, 22
instruction mnemonics, 7, 26
instruction packets, 7, 41

label, 3, 8
labels, 14, 41
LLAMA OPTIMIZE, 13
LLAMA VERSION, 13
load address, 1, 25
local label, 9
local symbol, 9

macro, 15, 24, 33
module, 22–24

number, 10
NUON VERSION, 13

operators, 12
optimization, 1, 5, 13, 24, 25, 31, 41
optimization, and external subroutines,

41
output file, 2, 5
overlay, 1, 25

padding, 43
predefined sections, 27

revision, 5, 7, 26

scale, 10–12
section, 25, 27
sections, C, 27
segment, 28
segments, C, 27
small vectors, 44

46 VM LABS CONFIDENTIAL PROPRIETARY 6/11/2001

	Introduction
	Usage
	Flags

	The LLAMA Assembly Language
	Instructions
	Instruction packets
	Before and after methods

	Equates
	Labels and Symbols
	Local Symbols
	Comments
	Expressions
	Numbers
	Boolean operators
	Comparison operators
	Bitwise operators
	Shift operators
	Arithmetic operators
	Operator precedence
	Functions

	Predefined Symbols
	Conditional Assembly
	Macros

	Directives
	.align
	.align.s
	.align.sv
	.align.v
	.alignlog
	.ascii
	.asciiz
	.binclude
	.bss
	.byte
	.cache
	.comm
	.data
	.dc.b
	.dc.s
	.duc.s
	.dc.sv
	.dc.v
	.dc.w
	.duc.w
	.ds.b
	.ds.s
	.ds.sv
	.ds.v
	.ds.w
	.else
	.end
	.endif
	.error
	.export
	.float
	.include
	.if
	.ifdef
	.ifndef
	.import
	.lcomm
	.linkbase
	.macro
	.mend
	.module
	.nocache
	.nooptimize
	.optimize
	.origin
	.overlay
	.revision
	.section
	.segment
	.start
	.text
	.warn
	.while
	.word

	Optimization
	General
	Optimization of Binary Code
	Assembly Language Optimization
	Limitations of assembly language output

	Overlays
	Interfacing C and Assembly
	Calling Conventions
	Header Files

	Bugs and Shortcomings
	Bugs
	Shortcomings

	Error Messages
	Unable to find previous instruction packet for padding
	Cache stall may cause repeated read/write to register
	Obsolete instruction form
	Obsolete shift
	Local access following remote load may trigger cache bug

