IMPULSE

Portable Graphics Engine
AlphaMask, Inc.
March 1, 2000

Overview

Impulseis a cross-platform graphics engine, capable of rendering high quality graphics on
PCs, Macs, Unix, and Embedded systems. It iswritten entirely in C++, though its API can
easily be wrapped in C functions for use by C-only clients.

Impulse runs well on popular systems (PC, Mac, Unix), but it has minimal knowledge of
the host OS. Access to the file system (for disk-based Fonts) and simple memory allocation
isal that isrequired. Font support is a separate module within Impulse, and can be
replaced with custom modules, making it very easy to port to custom OS environments.

This document is intended as an introduction to Impulse. It describes the major classes
available in the API, and how they work together. To help organize the classes and
concepts, this document breaks the process of drawing into three elements.

¢ Device: Thisiswhere the drawing takes place, typically a bitmap (either the screen or
an offscreen buffer), but it can be simply aredirection for recording the drawing into a
stream, a postscript file, or aredirection for computing bounding boxes or performing
hit-testing. The device also contains aview stack consisting of a matrices and clips.

¢ Attribute Thisobject isacollection of al the drawing attributes that affect the color
and style of the drawing. It contains flags for antialiasing and filtering, and fields for
frame size, text font and size, and special effectslike gradients, blurs, extrudes.

¢ Primitive: Thisisthe actual object being drawn. Impulse supports 3 classes of
drawing primitives. Geometric (lines, rectangles, paths), Bitmap, and Text. Other
common shapes (oval, round-rect, arc) can easily be constructed using paths.

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 1



GEOMETRY

Coordinates

Impulseis a device-independent graphics engine. This means that drawing primitives are
specified in ideal or local space (fractional values), and may be transformed (scaled,
rotated, etc) before they are used to draw something on the device (in device or pixel

space). Impulse coordinates have X increasing from left to right, and Y increasing from top

to bottom. The top-left corner of adevice defaultsto (0, 0).

Impulse can be conditionally compiled to use or not use floating point numbers. To
facilitate this, al Impulse coordinates use the type hsScalar, denoting a 32bit fractional
value that may be afloat or a 16.16 fixed.

typedef I nt32 hsFixed; // 16.16
#defi ne hsFi xedl (1 << 16)

#1f HS_SCALAR | S FLOAT
typedef float hsScal ar;
#def i ne hsScal ar 1 float(1)

#el se
typedef hsFi xed hsScal ar;
#defi ne hsScal ar hsFi xed1
#endi f

Some operations with hsScalar s can be performed directly in C, such as assignment,
addition/subtraction, comparison, as well as some (but not all) operations with integers.

hsScalar a, b, c, d;

a=>b+c - d;

if (a>Db) c =d;

a=>b* 3 /1 1egal

a=>b/ 3 /1 1egal

a=>b + 3; /'l I LLEGAL! Must use a = b + hslntToScal ar (3)
a = 3; /'l I LLEGAL! Must use a = hslntToScal ar(3)

However, other operations require macros to insure that the operations work correctly with

either version of hsScalar: e.g. multiplication/division, conversion to and from integers.

hsScal ar a, b, c;

i nt i
= hslnt ToScal ar (i);
= hsScal arMul (b, c); b * c
= hsScal arDi v(b, c); b/ c

a
a
a
i
i

/
/1

hsScal ar Round( a) ; /'l rounds
/1

hsScal ar Tol nt (a) ; truncat es

These types and macros are found in hsFixedTypes.h and hsScalar.h

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 2



Points and Rectangles

Points consist of two values. X and Y. Impulse defines a scalar point as hsPoint2, and an
integer point as hsl ntPoint2 (defined in hsPoint2.h).

struct hsPoint2 {
hsScal ar fX, fY;
b

struct hslntPoint2 {
I nt 32 fX, fY,;
b

Rectangles consist of four values: Left, Top, Right, Bottom. Impulse defines a scalar rect
as hsRect, and an integer rect ashsl ntRect (in hsRect.h).

struct hsRect {
hsScal ar fLeft, fTop, fR ght, fBottom
}s

struct hslntRect {
I nt32 fLeft, fTop, fRi ght, fBottom
}s

For arectangle to be valid, fLeft <= fRight and fTop <= fBottom.

Rects can be used as a drawing primitive, and they can also (along with Paths) be used as a
clip.

M atrices

All geometric transformations (tranglate, scale, rotate, etc.) are specified with matrices.
Impul se defines a 3x3 matrix using hsScalars.

struct hsMatrix33 {
hsScal ar fMap[3][ 3];
¥

While the client may set the values for fMap directly, there are a host of methods designed
to help you with this.

Reset () ;
Set Tr ansl at e( hsScal ar dx, hsScal ar dy);
Set Scal e(hsScal ar scal eX, hsScal ar scal eY,
hsScal ar pivot X, hsScal ar pivotY);
Set Rot at e( hsScal ar angl e,
hsScal ar pivotX, hsScal ar pivotY);

Set Skew( hsScal ar skewX, hsScal ar skewy,

hsScal ar pivot X, hsScal ar pivotY);

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 3



These Set_ methods initialize the matrix to the state specified by the parameters.

NOTE: The pivot parameters specify what coordinate should be left unchanged by the
matrix. For example, to rotate about the point P, use SetRotate(degrees, P.fX, P.fY).

Transl at e(hsScal ar dx, hsScal ar dy);
Scal e(hsScal ar scal eX, hsScal ar scal eY,
hsScal ar pivot X, hsScal ar pivotY);
Rot at e( hsScal ar angl e,
hsScal ar pivot X, hsScal ar pivotY);
Skew( hsScal ar skewX, hsScal ar skewy,
hsScal ar pivotX, hsScal ar pivotY);

All of these methods modify the matrix by the specified parameters. Thus, they should not
be called on an uninitialized matrix.

To concatenate two matrices together, use SetConcat. This produces a matrix that applies
both transformations at once. NOTE: The order of the matricesisimportant. The resulting
matrix effectly applies the second matrix and then the first.

Set Concat (const hsMatri x33* matri XA,
const hsMatrix33* matri xB);

/1l For exanple
hsMvatri x33 a, b, c;

a. Set Scal e(hsl nt ToScal ar (3), hslntToScal ar(3), 0, 0);
b. Set Tr ansl at e( hsl nt ToScal ar (10), hslnt ToScal ar (20));

c. Set Concat (&, &b); /1 ¢ will translate and then scale
c. Set Concat (&b, &a); // ¢c will scale and then transl ate

Paths

Paths are opagque objects, used to store geometry more complex than just arectangle. Paths
can contain multiple contours, and each contour can be made up of any number of line and
curve segments. The curve segments in a path are cubic beziers.

cl ass hsPat h;
A path is created by making method calls to add lines and curves.
voi d MoveTo(const hsPoi nt 2& pt);
voi d Li neTo(const hsPoi nt 2& pt);
voi d CurveTo(const hsPoi nt 2& pt0, const hsPoi nt 2& pl,
const hsPoi nt 2& p2);
voi d Cose(); [// close the current contour

There are no methods for deleting segments within a path. However, you can clear the
entire path using Reset().

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 4



voi d Reset () ;
hsBool |sEnpty() const;

Paths can be drawn using either the even-odd (EO) rule, or the winding rule. Thisis
specified in the path with the KEOFill_PathFlag. Paths default to winding fill (flags== 0).

enum {
kEOFi I | _Pat hFl ag = 0x01
1

U nt32 GetFl ags() const;
voi d Set Fl ags(U nt32 fl ags);

Paths have helper methods for adding common shapes as contours.

void AddRect(const hsRect* rect);
void AddPoly(int count, const hsPoint2 pts[]);
void AddPat h(const hsPat h* path);
void AddOval (const hsRect* oval);
void AddCircle(hsScal ar cX, hsScal ar cY, hsScal ar radius);
void AddRRect(const hsRect* r, hsScalar w, hsScal ar h);
void AddArc(const hsRect* r, hsScal ar start Angl e,
hsScal ar sweepAngl e, hsBool wedge);

Paths can return their bounds (as a rectangle), and be transformed by a matrix.

void GCetBounds(hsRect* bounds, hsBool exact) const;
void Transforn(const hshMatrix33* matrix);
void Transl ate(hsScal ar dx, hsScal ar dy);

Paths can be used as a drawing primitive, and they can also (along with Rects) be used as a
clip.

Pathlterator
Since paths are opague, Impulse provides an iterator for retrieving the datainside.

class hsPathlterator {
publi c:
hsPat hl t er at or (const hsPat h* pat h,
hsBool forced osed);

hsPat h: : Verb Next (hsPoint2 pts[4]);
b

The Next() method is called in aloop, until it returns kDone_PathVerb. The interpretation
of the pts[] parameter depends on the return value.

Verb returned from Next() [ Ptg] assigned
kDone_Pat hVer b none
kMoveTo_Pat hVer b ptg O]

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 5



kLi neTo_Pat hVerb pts]0..1]

kCurveTo_PathVerb pts0..3]

kd ose_Pat hVerb none
Example:

hsPat hlterator iter(&path);
hsPat h: : Verb ver b;
hsPoi nt 2 pts[4];

while ((verb = iter.Next(pts)) != hsPath:: kDone_Pat hVer b)

switch (verb) {
case hsPat h: : kMoveTo_Pat hVer b:

[/l pts[0] begins a new contour

br eak;
case hsPat h:: kLi neTo_Pat hVer b:

[/ pts[0..1] are a |line segnent

br eak;
case hsPat h:: kCurveTo_Pat hVer b:

/] pts[0.3] are a bezier segnent

br eak;
case hsPat h: : kC ose_Pat hVer b:

/1 marks the current contour

br eak;

Bitmaps

cl osed

While abitmap isn’'t exactly geometry, it does represent the structure and dimensions of a

drawing primitive, so it is discussed here.

class hs@GBitnmap {

publi c:
enum Config {
kNoConfi g,
kARGB32Conf i g,
kRGB32Confi g,
k555Confi g,
kl ndex8Confi g,
kAl pha8Confi g
b
enum {
kQddFi el dFl ag = 0x01
kEvenFi el dFl ag = 0x02
b
hsGBi t map() ;
~hsGBi t map() ;
voi d* fl mage;
Ul nt 32 fWdth, fHeight,

Copyright© AlphaMask, Inc. 1999-2000

f RowByt es;

Impulse Graphics Engine page 6



Config CGet Config() const;

voi d Set Confi g(Config config);

Ul nt 32 Cet Fl ags() const;

voi d Set Fl ags(U nt32 fl ags);

hsGCol or Tabl e* Get Col or Tabl e() const;

voi d Set Col or Tabl e( hsGCol or Tabl e* ct abl e);
unsi gned Cet Pi xel Si ze() const;

b

A hsGBitmap does not own the memory for the pixels, but merely pointstoit. It isthe
responsibility of the client to manage the pixel memory. The fields of a bitmap are:

+ flmage: Pointsto the memory for the pixels.
¢+ fWidth, fHeight: Dimensions of the bitmap.
¢+ fRowBytes: The number of bytes between subsequent rows of pixels.

Bitmaps are oriented top-to-bottom. Thus the first pixel pointed to by flmage corresponds
to the top-left corner of the bitmap.

The color-table classis a descendent of hsRefCnt, and is used with kindex8Config to map
8-bit indices (the pixel values) to colors.

NOTE: Impulse treats 32-hit pixels with alpha as premultiplied colors. This means that
within each pixel, the RGB components are stored already scaled by their alpha
component. This appliesto bitmaps that are drawn as primitives, as well as the result of
Impulse drawing into a bitmap.

Color 32-bit format [ARGB]
Black [OXFF 0 0 0]

White [OxFF OxFF OxFF OxFF]
Red [OXFF OxFF 0 O]

50% Translucent Red [0x80 0x80 0 O]
Transparent [0000]

A rule of thumb for premultiplied colors: al color components must be <= the alpha
component.

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 7



ATTRIBUTES

RefCnt
class hsGAttribute : public hsRefCnt;

ThehsGAttribute object is derived from hsRefCnt. This alows the attribute object to
be safely referenced by multiple objects.

cl ass hsRef Cnt {
I nt32 f Ref Cnt ;
publi c:
hsRefCnt () : fRefCnt(1) {}
vi rt ual ~hsRefcnt () ;

virtual void Ref();
virtual void UnRef();

H

When ahsRefCnt object is created, its private counter isinitialized to 1. Each time Ref()
is called, the counter isincremented. Each time UnRef() is called, the counter is
decremented. If the counter getsto O, then the object is deleted. It isan error to explicitly
delete a hsRefCnt object whose counter is> 1.

NOTES:

For the following sections, enums and methods will be listed without the hsGAttribute::
prefix, but they are all defined inside the hsGAttribute class (see hsGAttribute.h).

All of the Set... methods return a boolean value indicating whether the method actually

changed the setting. If the specified value is the same as the one aready in the attribute, the
method returns FAL SE, else the setting is changed and the method returns TRUE.

Attribute Flags

Attribute flags specify various options for modifying adrawing. The default setting isa
value of 0.

enum {
kAnti Al'i as = 0x01,
kFr ane = 0x02
kFilterBitnmap = 0x04,
kSquar ePen = 0x08,
kKer nText = 0x10,
kSubPi xel Text = 0x20,
kLi near Metri csText = 0x40,
kLi near Cont our Text = 0x80

b

U nt 32 Get Fl ags() const;
hsBool SetFlags(U nt32 fl ags);

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 8



Changing the value of kFrame may be done quite often. To accommaodate this, two helper
methods are available.

hsBool SetFill Mode(); /'l clear the kFrane bit
hsBool Set FraneMde(); // set the kFrane bit

Attribute Color

Color is specified in 16-bit component ARGB, represented by hsGColor. For alpha, O
specifies transparent, and OxFFFF specifies opague. There isasingle color in the attribute,
and it appliesto al primitives (line, rectangle, path, text) except for bitmaps, which only
respect the color's aphavalue.

typedef Ul nt16 hsGCol orVal ue;

struct hsGCol or {
hsGCol orValue fA fR fG B
}s

voi d Cet Col or (hsGCol or* col or) const;

hsBool Set Col or (const hsGCol or* col or);

hsBool Set ARGB( hsGCol or Val ue al pha, hsGCol or Val ue red,
hsGCol or Val ue green, hsGCol or Val ue bl ue);

Along with the color, two other objects can affect the color of the resulting image.
hsGShader isaclient-specified object that supplies per-pixel colors. It iscalled for each
scanline of the primitive being drawn. hsGXferM ode also is called per scanline, and is
responsible for compositing the source colors onto the device. Each of these objects are
optional, and may be nil.

cl ass hsGShader : public hsRefCnt;
cl ass hsGXferMdde : public hsRefCnt;

hsGShader * Cet Shader () const;
hsBool Set Shader (hsGShader * shader) ;

hsGXf er Mode* Get Xf er Mode() const;
hsBool Set Xf er Mode( hsGXf er Mode* nopde) ;

hsGShaders and hsGXferModes are derived from hsRefCnt, and are therefore reference
counted. SetShader() and SetXferMode() automatically call Ref() on the new object (if itis
not nil), and call UnRef() on the previous object (if it is not nil). GetShader() and
GetXferMode() do not change the object’ s reference count.
Example:

hsGShader * shader = new MyShader () ;

// shader’s refcnt is now 1

st at e- >Set Shader (shader) ;
/1 shader’s refcnt is now 2

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 9



shader - >UnRef () ;

/! shader’s refcnt is now 1

(voi d) st at e- >Get Shader () ;

/! shader’s refcnt is still 1

st at e- >Set Shader (ni l);

/! shader is now deleted, since its refcnt went to O

For specia effects such as blurring or embossing, the client may provide a subclass of
hsGM askFilter. This object, when present, is called to modify the alpha mask of a
drawing primitive. Like hsGShader and hsGXferMode, the hsGMaskFilter is reference
counted.

class hs@vaskFilter : public hsRefCnt;

hsGvaskFil ter* Get MaskFilter() const;
hsBool Set MaskFilter(hsGvaskFilter* filter);

Attribute Framing

Geometric primitives can be draw filled or framed (stroked). If they are framed (kFrame bit
is set), then the following fields apply.

enum CapType { kButt Cap, kRoundCap, kSquareCap };
enum Joi nType { kM terJoin, kRoundJoin, kBluntJoin };

hsScal ar Get FraneSi ze() const;
hsBool Set FraneSi ze( hsScal ar si ze);

CapTyp CGet CapType() const;
hsBool Set CapType( CapType captype);

Joi nType Get Joi nType() const;
hsBool Set Joi nType(Joi nType j oi ntype);

hsScal ar GetMterLimt() const;
hsBool SetMterLImt(hsScalar limt);

hsScal ar Get M nW dt h() const;
hsBool Set M nW dt h(hsScal ar m nW dt h) ;

The interpretation for FrameSize, CapType, JoinType and MiterLimit isthe sameasin
PostScript. MinWidth allows the client to set the minimum size (in pixels) for aframed
geometry. Thisis be used to keep very thin lines from disappearing when they are scaled
down. If MinWidth is set to O (its default), no minimum thickness is enforced.
Clients may modify the geometry at draw time by providing a subclass of
hsGPathEffect. This object is passed the original geometry, and may return a new one.
LikehsGShaders, hsGXferModes, and hsGMaskFilters, this classis reference counted.
class hsGPat hEf fect : public hsRef Cnt;

hsGPat hEf f ect * Get Pat hEf f ect () const;

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 10



hsBool Set Pat hEf f ect (hsGPat hEf fect* effect);

Clients may also override the scan conversion process by providing a subclass of
hsGRasterizer. This object is passed a path, and returns an alpha mask. This object is
reference counted like hsGShaders, hsGXferM odes, hsGM askFilters, and
hsGPathEffects.

class hsGRasterizer : public hsRefCnt;

hsGRasteri zer* CGetRasterizer() const;
hsBool Set Rasteri zer (hsCGRasteri zer* raster);

Attribute Text
Attributes for text include font, size, encoding, algorithmic styles, and spacing.

enum Text Encodi ng {
kAsci i Encodi ng,
kUTF8Encodi ng,
kUni codeEncodi ng

3
Text Encodi ng Get Text Encodi ng() const;
hsBool Set Text Encodi ng( Text Encodi ng encodi ng) ;

The text encoding identifies what kind of character codes are passed to drawing and
measuring methods. ASCI| specifiesthat all character codes are 1-byte. UTF8 specifies
that the characters require a variable number of bytes. Unicode specifies that each character
is 16-bits.

typedef Ul nt32 hsGront | D,

hsGFont | D Get Font 1 D() const;
hsBool Set Font | D( hsGFont I D font | D) ;

Fonts are identified by a 32-bit font ID. These I Ds are obtained using the hsGFontList
methods. A value of 0 specifiesthat the default font should be used.

hsScal ar Cet Text Si ze() const;
hsBool Set Text Si ze(hsScal ar textSize);

The text size specifies the size of the text (to be modified by the matrix and optional
TextFace). Note that the sizeis an hsScalar, and may be afractional value (e.g. 12.75).

These next two attributes (textface and textspacing) are optional structs. The Get methods
return aboolean indicating if the attribute has the value. To clear the value, pass nil to the
Set method.

struct hsGrlext Spaci ng {
enum {
/1l trimspaces when justified
kTri mJust Text = 0xO01

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 11



b

Ul nt 32 f Fl ags;

hsScal ar f Al i gnnent; // < 0 nmeans full justified
hsScal ar f SpacekExtra; // ignore if fAlignment < O
hsScal ar f Char Extr a; // ignore if fAlignment < O

b

hsBool Get Text Spaci ng( hsGTlext Spaci ng* spaci ng) const;
hsBool Set Text Spaci ng(const hsGrlext Spaci hg* spaci ng) ;

hsGT extSpacing alows the client to override the character spacing and alignment when
drawn using DrawGlyphs. fAlignment specifies a continuum between left (0), center (0.5)
and right (1) alignment. If alignment is< 0O, then its absolute value is interpreted as awidth,
and the text spacing is automatically adjusted to fit the text within that width. If alignment
>= 0, then fSpaceExtra and fCharExtra are added to their respective characters. If the
hsGTextSpacing field isnil (the default), text is drawn left-aligned.

The default setting for an attribute is no hsGTextSpacing. In this case, GetTextSpacing()

returns false, and does not modify the face parameter. To reset the attribute to its default
state, pass nil to SetTextSpacing().

struct hsGrText Face {

hsScal ar f Bol dness; /1 default hsScal ar1l
hsScal ar f Skew, /] default O
hsScal ar f XScal e; /! default hsScal arl
hsScal ar f XOf f set ; /] default O
hsScal ar fQutli neW dt h; /] default O
hsScal ar fUnderlineThi ckness; [/ default O
hsScal ar fUnderli neCk fset; /] default O

b

hsBool Get Text Face( hsGText Face* face) const;
hsBool Set Text Face(const hsGText Face* face);

hsGTextFace allows the client to modify the size and shape of the text. fBoldness
specifies algorithmic embol dening. fSkew and fX Scale combine to create a matrix that
modifies the shape of the text. fXOffset adds itself to each character’ s advance width.
fOutlineWidth specifies the thickness of outline text (a value of 0 means normal text).
Underline thickness and offset specify where to draw an underline.

The default setting for attribute is no hsGTextFace. In this case, GetTextFace() returns

false, and does not modify the face parameter. To reset the attribute to its default state, pass
nil to SetTextFace().

Attribute Text Measure

MeasureGlyphs returns the width of a string, and returns the line height in two optional
parameters. The character codesin the text parameter are interpreted based on the current
TextEncoding.

hsScal ar MeasureText (U nt 32 | ength, const void* text,

Copyright© AlphaMask, Inc. 1999-2000 Impul se Graphics Engine page 12



hsPoi nt 2* ascent, hsPoi nt2* descent);

Ascent and descent are points, so that MeasureText can return information about the angle
of the text aswell. The' Y component of ascent and descent indicates the line height (above
and below the baseline), and the X component reflects the italic angle (if any). For normal
upright text, the X component is 0.

GetTextWidths returns an array of widths for each character in a string. The method returns
the number of characters processed, base on the current TextEncoding. For
kAsciiEncoding, the return value == length. For kUnicodeEncoding, the return value ==
length/2. For KUTF8Encoding, the value depends on the actual charactersin the text.

i nt Get Text Wdt hs(UI nt 32 | ength, const void* text,
hsScal ar wi dths[]);

GetTextPath converts the text into a path containing the outlines of all the characters.

void GCetTextPath(U nt32 |Iength, const void* text,
hsPat h* pat h);

GetTextPath returns the path scaled by the text-size (and any TextFace scaling), and filters
it through the attributes PathEffect (if any).

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 13



DEVICE

The base class for all drawing devicesis hsGDevice.

class hs@evice : public hsRefCnt {
publi c:

virtual void Save();

virtual void Restore();

virtual void Concat(const hsMatri x33* nmatri Xx);

virtual void dipPath(const hsPath* path);

virtual hshMatrix33* GetTotal Matrix(hsMatri x33* matri x);
virtual void Pushlnto(hsGevice* target) const;

/1 The draw net hods do nothing, but rely on
/'l subcl asses to provide the functionality

virtual void Drawrull (hsGAttribute* attr);
virtual void Drawline(const hsPoint2* start,
const hsPoi nt 2* st op,
hsGAttri bute* attr);
virtual void DrawRect(const hsRect* rect,
hsGAttri bute* attr);
virtual void DrawPath(const hsPat h* path,
hsGAttri bute* attr);
virtual void DrawBitnap(const hsGBitnap* b,
hsScal ar x, hsScal ar v,
hsGAttri bute* attr);
virtual void DrawParanifext (U nt32 | ength,
const voi d* text,
hsScal ar x, hsScal ar vy,
hsGAttri bute* attr);
virtual void DrawPosText (Ul nt32 | ength,
const voi d* text,
const hsPoi nt2 pos[],
const hsPoint2 tan[],
hsGAttri bute* attr);

s
Device View Stack

The device maintains an internal stack of matrices and clips (views). These affect al
primitives drawn into the device. A new "view" is pushed onto the stack when Save() is
caled. Itisinitialized to an identity matrix and an unrestricted clip. This new view can be
modified: the matrix is changed using Concat(), and the clip is augmented by using
ClipPath(). To pop the current view off the stack, call Restore().

Example:

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 14



devi ce- >Dr awRect (& ect, &attr);

devi ce- >Save() ;

/1 now there is another view on the stack

devi ce- >Rot at e( hsl nt ToScal ar (30), 0, 0);

devi ce- >Dr awRect (& ect, &attr);

/1 now the rect is rotated 30 degress about (0, 0)
pat h. AddOval ( &rect);

devi ce->d i pPat h( &at h) ;

devi ce- >Dr awRect (& ect, &attr);

/1 now the rect draws through an oval clip

devi ce- >Restore();

// now the device is back to its original view state

There are helper methods for manipulating the matrix and clip.
/1 balance with one call to Restore()
void dipRect(const hsRect* rect);

void Transl ate(hsScal ar dx, hsScal ar dy);
void Scal e(hsScal ar sx, hsScal ar sy,
hsScal ar px, hsScal ar py);
void Rotate(hsScal ar degrees, hsScal ar px, hsScal ar py);
void Skew hsScal ar sx, hsScal ar sy,
hsScal ar px, hsScal ar py);

Pushinto() is used to transfer the entire view stack from the source device. Thisis useful
when you want to replicate the drawing from one device into another. Internally, thisis
done by first calling Save(), and then concatenating all of the matrices and clips from
source. To restore the device to its state before the Pushinto() call, only one call to
Restore() is needed.

ClipRect() isautility method for creating a rectangular path, and clipping with it.
Internally, the code looks something like the following:

voi d hsGDevice:: dipRect(const hsRect* rect)

{ if (rect '=nil)

hsPat h pat h;

pat h. AddRect (rect);

t hi s- > i pPat h( &pat h) ;
} }

Internally, Impul se detects paths that are rectangular, and uses them as such for efficiency.

Trandate(), Scale(), Rotate(), Skew() and Concat() methods should look familiar. They are
similar to the methods on hsMatrix33, except that on a Device, they premultiply the device
matrix (are applied before the rest of the Device matrix), where as the hsMatrix33 methods
postmultiply, applying their change after the original matrix.

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 15



Device TotalM atrix

The device method GetMatrix() returns only the current matrix for the view on the top of
the stack. Thisisthe matrix you are allow to modify. However, when a primitive is drawn,
it istransformed by the concatenation of all of the matricesin the stack. This concatenated
matrix is called the TotalMatrix. The TotalMatrix cannot be modified, but may be retrieved.
It isuseful for mapping (transforming) points into device space (pixel spacein the case of a
hsGRasterDevice).

hsMatri x33* Get Total Matri x(hsMatri x33* matrix);

voi d MapPoi nt s(i nt count, const hsPoint2 src[],
hsPoint2 dst[]);
voi d MapRect (const hsRect* src, hsRect* dst);

GetTotaMatrix() returns the parameter it is passed, not the actual total matrix. This allows
the following usage.

hsMatri x33 nmatri x;

devi ce->CGet Tot al Matri x(&matri x) - >MapPoi nts(4, src, dst);
MapPoints() can accept srd] and dst[] being the same array. MapRect returns in dst the
bounds of the transformed src rectangle in the case the TotalMatrix involves more than just
trangdlation and scaling.
Sometimesit is helpful to perform the inverse operation: mapping points (and vectors) from
device coordinates back through the TotalMatrix. This can be done by calling
GetTotalMatrix() and then inverting the matrix, or using the following helper methods:

hsBool GetTotal Il nverse(hsMatri x33* inverse);

hsBool InvertPoints(int count, const hsPoint2 src[],
hsPoint2 dst[]);
hsBool I nvert Rect (const hsRect* src, hsRect* dst);

These inverse methods return a boolean value, indicating their success or failure. If the
device'stotal matrix is non-invertible, these methods return false and do not modify their
parameters.

Device Subclasses

Impulse provides several basic subclass of hsGDevice, overriding the above Draw_
methods.

¢ hsGRaster Device: This subclass renders into a bitmap. The client can provide the
memory for the bitmap, or the class can allocate it.

¢ hsGOffscreenDevice: This subclass of hsGRasterDevice manages creating a
platform-specific offscreen bitmap, and offers easy methods for copying it onto the
screen.

¢ hsGStreamDevice: This subclass captures the drawing commands and writes them
into a stream for later playback.

Copyright© AlphaMask, Inc. 1999-2000 Impul se Graphics Engine page 16



¢ hsGPostScriptDevice: This subclass captures the drawing commands and translates
them into PostScript commands, ignoring those features of Impulse that are not
supported in PostScript.

¢ hsGHitTestDevice: Thissubclass provides a device that tests whether a given point
or rectangle intersects any of the primitives drawn into it.

Impulse also provides helper classes based around hsGDevice

¢ hsGBounder: This class provides a device that returns the bounds of any primitives
drawninto it.

¢ hsGStreamPlayback: This class takes the drawing commands previously recorded
by hsGStreamDevice into a stream, and replays them into another device.

hsGRaster Device

To draw into a bitmap, use hsGRasterDevice (or its descendant hsGOffscreenDevice).

cl ass hsGRasterDevice : public hsGDevice {
publi c:
HSScanHandl er* Get Handl er () const;
virtual void Set Handl er (HSScanHandl er * handl er);

voi d Get Oi gi n(hsl nt Poi nt 2* origin);
virtual void SetOrigin(int x, int y);

hsGBi t map* Cet Pi xel s(hsGBi t rap* pi xel s) const;
virtual void Set Pi xel s(const hsGBi t map* pi xel s);
hsl nt Rect * Get Bounds( hsl nt Rect* bounds) const;
voi d Set Bounds(const hsl nt Rect* bounds,

unsi gned bi t Dept h) ;
virtual void Er ase(const hsGCol or* col or);

/1 overrides of the draw net hods

b

HSScanHandler is an optional object that the raster device can reference. If the device
references one, it is called with the device-space (transformed into device coordinates)
primitive before it is drawn. If the handler returns TRUE, then drawing continues. If the
handler returns FAL SE, then nothing is drawn. This can be used to accumulate the bounds
of objects being drawn, or to hide a cursor.

SetOrigin() affects the device's total matrix by apply atranslate after all other transforms
have been applied.

Call SetPixels() to give the device the bitmap it should draw into. If the fimage field of the

bitmap is set to nil, then the device will allocate the memory for the bitmap (based on its
width, height, pixel-size). If thisis done, then the device will manage deleting that memory

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 17



when either the device is destroyed, or another to call to SetPixels() is made. Calling
GetPixels() returns a bitmap whose fimage field reflects either the memory specified at the
SetPixels() call, or the memory allocated by the device. It also calls SetOrigin() with the
top-left of the bounds.

SetBounds() is a helper method. It takes a bounding rectangle and constructs a bitmap
based on it and the specified bitDepth. In turn, it calls SetPixels() with a bitmap whose
fimage field is nil, forcing the device to allocate the memory.

Erase() fills the device's bitmap with the specified color (including apha). This method
does not call any of the virtual Draw methods, but writes to the pixels directly, ignoring the
matrix or clip.

Raster Drawing
The methods DrawL ine(), DrawRect(), and DrawPath() operate in the following manner.

1. Prepare the geometry for scan conversion
1.1. Apply the hsGPathEffect (if any) from the attribute.
1.2. Stroke the geometry (if kFrame is specified by the attribute).
1.3. Apply the total-matrix to the geometry, transforming it into device space.

2. Scan convert the geometry into an alpha mask, clipped to the bounds of the stack of
deviceclips.

2.1. Use the hsGRasterizer (if any) from the attribute, going from a geometry to a
mask.

2.2. Apply the hsGMaskFilter (if any) from the attribute, generating another mask.

3. Blit the mask into the pixels using the color from the attribute, clipped to the stack of
deviceclips.

3.1. Use the hsGShader (if any) from the attribute to obtain the colors (modified by the
attribute's color's alpha).

3.2. Use the hsGXferMode (if any) from the attribute to blend the colors with the
device's pixels.

DrawBitmap() draws the bitmap primitive with its top-left corner specified by the X and Y
parameters. The bitmap respects the specified matrix and clip, and the attribute’ s color's
alpha, and optional hsGXferMode. If the device's matrix causes the bitmap to be scaled,
rotated, or otherwise transformed when it is drawn, then Impulse looks at the
kFilterBitmap flag in the attribute. Filtering generally generates better results, but runs
slower.

DrawParamText() and DrawPosText() offer two different ways to specify where to draw
text. DrawParamText() just specifies the starting location, and relies on the spacing
information in the font (and the optional hsGTextFace and hsGTextSpace fields of the
attribute) to determine where to draw the characters. DrawPosText() specifies the position
of each character (and optionally atangent for each character). Both methods use the font
and text size from the attribute.

Copyright© AlphaMask, Inc. 1999-2000 Impul se Graphics Engine page 18



hsGOffscreenDevice

class hsGO fscreenDevice : public hsGRasterDevice {
publi c:
hsOf f screen fOFf screen;

void SetSize(int wdth, int height, int depth);
void CopyToScreen(int dx, int dy);
b

This subclass of hsGRasterDevice creates an offscreen object to use as the pixels. How this
is done depends on the host OS.

¢ Windows: theoffscreen creates a HDC, and the CopyToScreen() method calls
StretchDIBits() or SetDIBitsToDevice().

¢ Macintosh: the offscreen creates a Gworld, and the CopyToScreen() method uses
CopyBits().

hsGStreamDevice

cl ass hsGStreanDevice : public hs@evice {
publi c:
void StartRecordi ng(hsStreant out Strean);
void StopRecording();

/!l Overrides of the draw net hods from hs@evi ce

b

This device does not render anything, but instead records al of the drawing, matrix and
clip calsinto the stream object the caller provides (see hsStream.h). The resulting stream is
completely self-contained, and can be copied or written to disk. To replay the drawing,
simply pass the stream to a hsGStreamPlayback object.

cl ass hsGStreanPl ayback {
publi c:
hsGSt r eanPl ayback( hsRegi stry* registry);

void Playback(hsStreant inStream hsGDevice* target);
1

The optional hsRegistry object passed to the construct allows any flattened subclasses to be
reanimated during playback. The file hsGRegisterAll.h declares a function that registers all
of the features provided with Impulse (gradient shaders, dashing path-effects, etc.).

Example:
void DrawStrean(hsStreant inStream hsCGDevice* target)
{

hsRegi stry registry,;
hsGSt r eanPl ayback pl ayer (& egistry);

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 19



hsGRegi sterAl | (& egistry);

pl ayback. Pl ayback(i nStream target);
}

The target device can be any subclass of hsGDevice, including another stream device. You
may pass nil for the constructor of the hsGStreamPlayback, in which case any subclassed
objects embedded in the stream will be ignored.

hsGPostScriptDevice

cl ass hsGPost Scri pt Device : public hsGevice {
publi c:

voi d Set Paper Si ze(int width, int height);

voi d Set PageBounds(const hslnt Rect* margins);

void StartDoc(FILE* target);
voi d StartPage();

voi d EndPage();

voi d EndDoc();

/! Overrides of the Draw net hods from hs@evi ce

};

The hsGPostScriptDevice, like hsGStreamDevice, captures all drawing commands into (in
this case) afile. However, this device converts these commands into their PostScript
equivalents. It ignores those Impul se features that have no corresponding featurein
PostScript: hsGRasterizer, hsGMaskFilter, hsGShader, hsGXferMode. In addition, it does
not offer any font-downloading services. It is up to the client to insure that any fonts
needed will be available on the printer.

NOTE: Thisisan experimental class, and not all features are fully implemented.

hsGHitTestDevice

The hsGHitTestDevice class provides for pixel-accurate hit testing. It does this by storing a
target rectangle in device (pixel) coordinates. Any drawing performed on the device will not
render, but will set aflag asto whether its pixels intersected the target rectangle.

cl ass hsGHit Test Devi ce {
publi c:
hsGHi t Test Devi ce(const hsl nt Rect* target,
hsBool respectAl pha);
virtual ~hsGHit TestDevice();

voi d Reset () ;
hsBool IsHi t() const;

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 20



The target rectangle (specified by the client) is expressed in device coordinates. To specify
asingle point at (X,Y), pass the rectangle (X, Y, X+1, Y+1). Any drawing directed to this
device will not render, but will be tested against the target rectangle. Once one primitive
intersects the target rectangle, the IsHit() method will return true. Calling Reset() sets the
IsHit() flag back to FALSE.

hsGDevice Utilities

The following classes are not subclasses of hsGDevice, but do create devices internally and
offer functionality based on hsGDevice.

hsGBounder

The hsGBounder class provides a mechanism for calculating the bounds of one or drawing
primitive. Note that this bounds can vary greatly from just the bounds of the primitive’s
geometry, for there are many factors that affect the bounds...

¢ Framing (stroking) adds to the bounds. In the simplest case, 1/2 of the frame sizeis
added to each side of the bounds, but miter joins (if they are selected in the attribute)
can extend the bounds even further.

¢ Thedevice' s matrix can transform the geometry, affecting its bounds.

¢ The optional objects hsGPathEffect, hsGRasterizer, hsGMaskFilter can al modify the
drawing of a primitive such that its bounds differ from the geometry. Note that
hsGShader and hsGXferM ode objects cannot affect the size of the drawn primitive,
only what color(s) itisdrawnin.

cl ass hs@ounder {
publi c:
hsGevi ce* GetDevice();

voi d Reset () ;
hsBool Get Bounds( hsl nt Rect* bounds);

b

GetDevice() returns a private device object. Any drawing directed to this device will not
appear anywhere, but will its bounds will be accumulated by the bounder object. Calling
Reset() reinitializes the bounder’ s accumul ater rectangle, so the same bounder object can be
used to compute the bounds of different primitives. Notice that GetBounds() returns a
boolean, and returns the resulting bounds (if bounds != nil) as an integer rectangle. Thisis
the device coordinate bounds of the primtive(s) that were drawn into the device returned by
GetDevice(). If GetBounds() returns false, then no primitive was drawn into the device (or
if onewas, it was clipped out).

Example usage:
cl ass Shape {

publi c:
virtual void Draw hsGDevi ce* device) = O;

Copyright© AlphaMask, Inc. 1999-2000 Impulse Graphics Engine page 21



hsBool Bounds( hsl nt Rect* bounds);
1
hsBool Shape: : Bounds( hsl nt Rect* bounds)
hs@ounder bounder;

t hi s- >Dr aw( bounder . Get Devi ce());

return bounder. Get Bounds(bounds);

}

This exampl e assumes the the Shape class has subclasses that define the Draw() method for
various types of shapes. Each shape subclass knows how to draw itself into adevice. The
Bounds() method is not virtual, and need only be implemented by the base class, since it
can create a bounder device and pass that to the Shape’ s virtual Draw() method. Whatever
the subclass draws will get accumulated by the bounder’ s device, and returned when
GetBounds() is called.

We can add hit-testing to our example.

cl ass Shape {

publi c:
h“sBooI HtTest(int x, int y);
3
hsBool Shape::H tTest(int x, int y)
{ hsl nt Rect t arget;

target.Set(x, vy, x + 1, y + 1);
hsGHi t Test Devi ce tester(& arget, true);
thi s->Draw &t ester);

return tester.IsH t();

Copyright© AlphaMask, Inc. 1999-2000 Impul se Graphics Engine page 22



