
V M L A B S

Puffin:
A Debugger For

Revision 1.30
5-May-99

Copyright  1997-1999 VM Labs, Inc. All rights reserved.

Nuon™, Nuon Media Architecture™, and the logo are trademarks of VM
Labs, Inc.

Proprietary and Confidential to VM Labs, Inc.

The information contained in this document is confidential and proprietary to
VM Labs, Inc., and is provided pursuant to a Non-Disclosure agreement
between VM Labs, Inc., and the recipient. It may not be distributed or
copied in any form whatsoever without the express written permission of VM
Labs.

The information in this document is preliminary and subject to change at any
time. VM Labs reserves the right to make changes to any information
described in this document.

Note: This document is continually updated to reflect the current state of the
Nuon development system hardware and software. If you have a version
that is more than five or six months old, it is likely out of date.

Please address comments or report errors to Mike Fulton at VM Labs
(mfulton@vmlabs.com).

VM Labs, Inc.
520 San Antonio Road
Mountain View, CA 94040

Tel: (650) 917-8050
Fax: (650) 917-8052

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE I I I

Table of Contents

1. INTRODUCTION..1-1

1.1 Usage..1-1
1.2 Environment Variables..1-1

1.2.1 MD_PORT ..1-1
1.2.2 MD_LOGFILE ...1-1
1.2.3 PUFFIN_PATH..1-2

1.3 User Customization Files ...1-2
1.3.1 USER.LSP...1-2
1.3.2 USER2K.LSP..1-2

1.4 Global Variables..1-3
1.4.1 MMP and &m...1-3
1.4.2 *MPE& and &p ...1-3
1.4.3 &p0, &p1, &p2, and &p3..1-3

1.5 Customizable Global Variables..1-3
1.5.1 *STEP-OVER-INTERRUPTS* ...1-3
1.5.2 *DETECT-CONFLICTS*..1-4
1.5.3 *DISPLAY-WARNINGS*...1-4
1.5.4 *DISPLAY-INFO*..1-4

2. DEBUGGING FUNCTIONS...2-1

2.1 Select A Processor...2-1
2.1.1 select-processor..2-1

2.2 File Loading Functions ...2-1
2.2.1 load-debug-file ..2-1
2.2.2 load-source-file..2-1
2.2.3 load-and-run-source-file ...2-2
2.2.4 load-object-file..2-2
2.2.5 load-and-run-object-file ...2-3
2.2.6 load-symbols ..2-3
2.2.7 load-binary-file..2-3
2.2.8 set-source-path ..2-4

2.3 Execution Control Functions ...2-4
2.3.1 run..2-4
2.3.2 step ...2-4
2.3.3 step-over ..2-4
2.3.4 stop ...2-4
2.3.5 restart ...2-4

2.4 Breakpoint Functions..2-5

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE IV

2.4.1 setbp...2-5
2.4.2 clearbp..2-5
2.4.3 showbp ..2-5

2.5 Watch Functions ..2-5
2.5.1 watch symbol...2-5
2.5.2 watch-change...2-6
2.5.3 unwatch..2-6
2.5.4 define-bitfield...2-6

2.6 Before/After Methods..2-7
2.6.1 before ..2-7
2.6.2 remove-before ..2-7
2.6.3 after...2-7
2.6.4 remove-after...2-8

2.7 Image Output Functions..2-8
2.7.1 write-image ...2-8
2.7.2 write-raw-image...2-8

2.8 Miscellaneous Functions...2-8
2.8.1 disassemble ...2-8
2.8.2 dump ...2-9
2.8.3 runtime-eval...2-9
2.8.4 find-symbol ...2-9

3. THE DEBUGGING ARCHITECTURE...3-1

4. THE CHIP ABSTRACTION ...4-1

4.1 C-MMP Class...4-1
4.1.1 Global Variables ..4-1
4.1.2 Methods ...4-1

4.2 C-MPE Class..4-4
4.2.1 Global Variables ..4-4
4.2.2 Methods ...4-4
4.2.3 Execution Control Methods...4-8
4.2.4 Breakpoint Methods ...4-9
4.2.5 Object File Access Methods .. 4-11

4.3 C-REGISTER Class.. 4-14
4.3.1 Methods .. 4-14

4.4 C-BREAKPOINT Class ... 4-14
4.4.1 Methods .. 4-15

5. UTILITY FUNCTIONS ..5-1

5.1 Fixed Point Math Operations ..5-1

6. DELETED INFORMATION FROM HERE ON!6-1

6.1.1 Emulator-Only Methods ..6-1

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE V

6.1.2 Other misc methods..6-3
6.1.3 Emulator Only Methods ..6-5

6.2 BASIC-VECTOR-REGISTER Class ...6-6
6.2.1 Methods...6-6

6.3 VECTOR-REGISTER Class ..6-6
6.3.1 Methods...6-7

6.4 VECTOR-IO-REGISTER Class...6-7
6.4.1 Methods...6-7

6.5 ACCUMULATOR Class...6-7
6.5.1 Emulator Only Methods ..6-7

7. THE DEBUGGER ABSTRACTION ...7-1

7.1 DEBUGGER Class ...7-1
7.1.1 Global Variables ..7-1
7.1.2 Methods...7-1

7.2 MPE-DEBUGGER Class ...7-2
7.2.1 Global Variables ..7-2
7.2.2 Methods...7-2
7.2.3 Emulator Only Methods ..7-5

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE VI

This page intentionally left blank.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 1-1

1. Introduction

Puffin is a programmable debugger for the Nuon Architecture. It supports the
standard debugger features of breakpoints and single stepping along with powerful
features like before and after methods. Puffin uses a scripting language called
XLISP which is similar to the programming language Scheme.

1.1 Usage

There are two versions of Puffin, one with a GUI interface and one with a command
line interface. The GUI version of Puffin is called Puffin2K, The command line
version is called simply Puffin. When you invoke either version from the command
line, you can supply optional arguments. These arguments should be the names of
files you want loaded. The files should contain debugger scripts (XLISP code).

1.2 Environment Variables

Puffin uses some environment variables to control its execution. You should set
these variables before invoking Puffin.

1.2.1 MD_PORT
If you are debugging a Nuon hardware system, you should set the environment
variable MD_PORT to the IP address of the Nuon hardware system. For example:

set MD_PORT=192.1.1.226

This variable is also used by other tools in the Nuon SDK.

1.2.2 MD_LOGFILE
This environment variable is mostly used to debug Puffin itself. Set it to the name of
a file if you want logging information about TCP/IP requests and responses sent to
the Nuon hardware written into the file.

For example:

set MD_LOGFILE=mpacket.log

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 1-2

Note: Do not set this variable unless you really need the resulting log file. Writing
to the log can slow down debugger operations and in particular downloads
significantly.

1.2.3 PUFFIN_PATH
It isn’t necessary to set this variable if you have installed the Puffin debugger along
with the rest of the Nuon SDK and are using the standard paths relative to the
directory specified by the VMLABS environment variable.

If you want to place the XLISP files (PUFFIN.LSP, MMP.LSP, MPE.LSP, etc.) in
different directories from those used by the standard distribution, set this
environment variable to a path where these files can be found. For example:

set PUFFIN_PATH=d:\work\lisp;d:\work\other

This directs Puffin to search for XLISP files in the specified directories in the order
in which they are listed.

1.3 User Customization Files

You can customize the behavior of Puffin using one of the user customization files
described below. These files are automatically loaded by Puffin during startup and
can override the default settings of Puffin global variables.

1.3.1 USER.LSP
The USER.LSP file is loaded by both Puffin and Puffin2K. You should place in
USER.LSP any customizations that you want to apply to both the command line and
GUI versions of Puffin.

1.3.2 USER2K.LSP
The USER2K.LSP file is loaded only by Puffin2K. You should place in
USER2K.LSP any customizations that you want to apply only to Puffin2k.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 1-3

1.4 Global Variables

1.4.1 MMP and &m
The variable *MMP* is always bound to an instance of the C-MMP class. The
variable &m is a shorthand for *MMP*.

1.4.2 *MPE& and &p
The variable *MPE* is always bound to the instance of C-MPE corresponding to the
currently selected MPE. The variable &p is a shorthand for *MPE*. Within a before
or after method or within the conditional expression of a conditional breakpoint,
these variables are temporarily rebound to the instance of C-MPE associated with
the MPE that has reached the associated breakpoint.

1.4.3 &p0, &p1, &p2, and &p3
The variables &p0, &p1, &p2 and &p3 are bound to the corresponding MPEs.

1.5 Customizable Global Variables

Puffin uses some global variables within its scripting language to control the
debugger operation. You can override the values of any of these variables by placing
the appropriate commands in your USER.LSP or GUI-USER.LSP files or in a
debugger script files. You can also temporarily override a variable by typing the
appropriate command at the command prompt in Puffin or in the listener window in
Puffin2K.

1.5.1 *STEP-OVER-INTERRUPTS*
When *step-over-interrupts* is set to #t (which it is by default), Puffin attempts to
step over the execution of the interrupt service routine of any interrupt that occurs
during single stepping. To disable stepping over interrupts, set this variable to #f.

To enable stepping over interrupts:

(set! *step-over-interrupts* #t)

To disable stepping over interrupts:

(set! *step-over-interrupts* #f)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 1-4

1.5.2 *DETECT-CONFLICTS*
When *detect-conflicts* is set to #t (which it is by default), Puffin halts and displays
an error message when it detects a conflict within an instruction packet. Set this
variable to #f to ignore conflicts.

1.5.3 *DISPLAY-WARNINGS*
When *display-warnings* is set to #t (which it is by default), Puffin will display
warnings produced by LLAMA (which it uses to assemble source files during the
load process). To suppress the display of warnings, set this variable to #f.

1.5.4 *DISPLAY-INFO*
When *display-info* is set to #t (which it is by default), Puffin will display
informational messages produced by LLAMA (which it uses to assemble source
files during the load process). To suppress the display of informational messages,
set this variable to #f.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-1

2. Debugging Functions

2.1 Select A Processor

2.1.1 select-processor

 (select-processor i)

Selects the specified processor in the specified debugger. This changes the binding
of the variables *mpe* and &p to the new MPE.

2.2 File Loading Functions

2.2.1 load-debug-file

(load-debug-file filename)

Load a file containing XLISP code. This file usually contains commands to initialize
a debugging session including selecting processors and loading source or object
files. It can also be used to setup watch variables and breakpoints as well as to
define functions needed for the current debugging session.

2.2.2 load-source-file

(load-source-file filename &key processor ignore-
before-after? use-fast-loader? load-debugging-info?
load-code? initialize? run?)

Load Nuon source code into the mpe associated with the debugger.

:processor selects the target mpe. The default is &p.

:ignore-before-after? should be set to #t to ignore before and after methods. Its
default value is #f.

:use-fast-loader? should be set to #t to use the fast loader. The fast loader uses a
helper program that it loads into the mpe being loaded. It only really speeds up
loading into SDRAM or system ram. If you are only loading on-chip memory,
it is probably faster to set this parameter to #f. The default is #t.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-2

:load-debugging-info? should be set to #t to load debugging information
(symbols and line numbers). You can set it to #f if you just want to load the
code and don't care about debugging. The default is #t.

:load-code? should be set to #t to load code and data. You can set it to #f if you
just want to load debugging information. The default is #t.

:initialize? should be set to #t to initialize the program for debugging. When this
parameter is set to #t, the debugger sets a breakpoint at the first instruction of
the program and runs until it hits the breakpoint. This has the effect of loading
the instruction pipeline and setting pcexec to the start address of the program.
If :initialize? is set to #f, the program is loaded and its start address is placed
in pcfetch. The default is #t.

:run? should be set to #t to automatically start running after loading the object
file. If :run? is set to #f, the object file is loaded but not started. The default is
#f.

Note: This function used to be called mload.

2.2.3 load-and-run-source-file

(load-source-file filename &key processor ignore-
before-after? use-fast-loader? load-debugging-info?
load-code?)

Assemble, load, and start running Nuon source code. This function does the same
thing as the load-source-file function with the :run? parameter set to #t.

2.2.4 load-object-file

(load-object-file filename &key processor ignore-
before-after? use-fast-loader? load-debugging-info?
load-code? initialize? run?)

Load Nuon object file (either a .cof file or an .mpo file) into the mpe associated
with the debugger.

:processor selects the target mpe. The default is &p.

:ignore-before-after? should be set to #t to ignore before and after methods. Its
default value is #f.

:use-fast-loader? should be set to #t to use the fast loader. The fast loader uses a
helper program that it loads into the MPE being loaded. It only really speeds

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-3

up loading into SDRAM or system ram. If you are only loading on-chip
memory, it is probably faster to set this parameter to #f. The default is #t.

:load-debugging-info? should be set to #t to load debugging information
(symbols and line numbers). You can set it to #f if you just want to load the
code and don't care about debugging. The default is #t.

:load-code? should be set to #t to load code and data. You can set it to #f if you
just want to load debugging information. The default is #t.

:initialize? should be set to #t to initialize the program for debugging. When this
parameter is set to #t, the debugger sets a breakpoint at the first instruction of
the program and runs until it hits the breakpoint. This has the effect of loading
the instruction pipeline and setting pcexec to the start address of the program.
If :initialize? is set to #f, the program is loaded and its start address is placed
in pcfetch. The default is #t.

:run? should be set to #t to automatically start running after loading the object
file. If :run? is set to #f, the object file is loaded but not started. The default is
#f.

2.2.5 load-and-run-object-file

(load-object-file filename &key processor ignore-
before-after? use-fast-loader? load-debugging-info?)

Load and start running a Nuon object file. This function does the same thing as the
load-object-file function with the :run? parameter set to #t

2.2.6 load-symbols

(load-symbols filename &key processor)

Load the symbols and line numbers from a Nuon object file for use with the
specified MPE.

: processor selects the target MPE. The default is &p.

2.2.7 load-binary-file

(load-binary-file addr filename)

Load a binary file at the specified address MPE associated with the debugger.

Note: This function used to be called bload.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-4

2.2.8 set-source-path

(set-source-path! path &optional debugger)

Sets the path the debugger uses to find source files. The path should be in the form
of a list of strings naming directories where files are to be found. The directory
separator should be the forward slash (/) even on Windows 95/98 systems. The
debugger defaults to &d.

2.3 Execution Control Functions

2.3.1 run

 (run &optional processor)

Start the MPE running. The processor defaults to &d.

2.3.2 step

 (step &optional processor)

Single step the MPE. The processor defaults to &d.

2.3.3 step-over

 (step-over &optional processor)

Single step the MPE, stepping over subroutine calls. The processor defaults to &d.

2.3.4 stop

 (stop &optional processor)

Stop the MPE. The processor defaults to &d.

2.3.5 restart

 (restart)

Re-initializes the MMP and reloads the last program loaded into an MPE or the last
debugger file loaded.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-5

2.4 Breakpoint Functions

2.4.1 setbp

 (setbp addr &key condition)

Set a breakpoint at the specified addresses in the currently selected processor. If the
condition keyword parameter is specified, it should be an expression that returns
true (any value other than #f) if execution should stop and #f if it should continue
without stopping. Puffin will evaluate the expression when the breakpoint is
encountered and will stop if the expression evaluates to true. If the expression
evaluates to #f, Puffin will automatically continue without stopping.

Within the expression, the names of registers are bound to their associated register
objects. In addition, the symbol &p is bound to the MPE object.

For example:

(setbp "loop" :condition '(< (r1 'value) 2)))

This will break at the label "loop" if the value of r1 is less than 2.

2.4.2 clearbp

 (clearbp addr…)

Clear breakpoints at the specified addresses in the currently selected processor.

2.4.3 showbp

 (showbp)

Show all active breakpoints in the currently selected processor.

2.5 Watch Functions

2.5.1 watch symbol

(watch symbol &key format popup-format fracbits count
local? use-cache? indirect?)

Setup to watch the specified variable. Returns an id for the watch request.

Watch keyword parameters:

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-6

:format one of 'hex, 'binary, 'decimal, 'real or 'ascii (default is
'hex)

:popup-format the name of a bitfield format defined with define-bitfield
(no default)

:fracbits number of bits in the fractional part of a 'real or 'binary
value (default is 0)

:count number of elements in an array of values (default is 1)

:local? use the mpe memory map if #t and the global memory
map if #f (default is #t)

:use-cache? look through the data cache if #t (default is #f)

:indirect? treat the value as a pointer and display the value pointed
to (default is #f)

2.5.2 watch-change

(watch-change id &key format popup-format fracbits
count local? use-cache? indirect?)

Changes the settings of an existing watch request. The keywords are the same as in
the watch function above.

2.5.3 unwatch

(unwatch id)

Remove the watch request with the specified id.

2.5.4 define-bitfield

(define-bitfield name &rest fields)

Define a named bitfield definition to be used with the :popup-format parameter to
the watch function. Each field is a string of the form:

"<label>.<start-bit>:<end-bit>.<format>"

where <label> is a the label that will appear to the left of the field value in the
popup, <start-bit> is the bit number of the start of the field, <end> is the bit number
of the end of the field and <format> is a printf style format string for displaying the
field. For example:

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-7

(define-bitfield "my_bitfield"
"this.0:1.%d"
"that.2:3.%x"
"other.4:31.%d")

This defines a bitfield definition called "my_bitfield" that consists of three field
definitons. The first has the label "this" and starts with bit 0 and ends with bit 1. It is
displayed with the format %d which converts the value to decimal. The second field
has the label "that" and starts with bit 2 and ends with bit 3. It is displayed with the
format %x which converts the value to hexadecimal.

2.6 Before/After Methods

2.6.1 before

(before addr &rest body)

Establishes a before method at the specified address. When execution reaches the
specified address, the code in the body of the before method is executed before the
instruction at that address is executed.

For example:

(before #x80001000
 (if (< (r0 'value) 0)
 (format #t "~%R0 has gone negative!")))

This will establish a before method at the address $80001000 that tests the value of
r0 and displays a message in the console window if the value of r0 is less than zero.

Within the expression, the names of registers are bound to their associated register
objects. In addition, the symbol &p is bound to the MPE object.

2.6.2 remove-before

(remove-before addr)

Remove the before method at the specified address.

2.6.3 after

(after addr &rest body)

Establishes an after method at the specified address. When execution reaches the
specified address, the code in the body of the after method is executed after the

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-8

instruction at that address is executed. This function is analogous to the before
function above except that the code is executed after the instruction at the specified
address.

2.6.4 remove-after

(remove-after addr)

Remove the after method at the specified address.

2.7 Image Output Functions

2.7.1 write-image

(write-image name &optional x-size y-size &key base
mode mpe)

Write an image from display memory to a .PCX bitmap image file.

The x-size and y-size parameters default to the display height and width. The base
defaults to the start of external ram and the mode defaults to *display-mode*.

2.7.2 write-raw-image

(write-raw-image name &optional x-size y-size &key
base mode mpe)

Write an image from display memory to a .PCX bitmap image file.

The x-size and y-size parameters default to the display height and width. The base
defaults to the start of external ram and the mode defaults to *display-mode*.

This function differs from write-image in that no color space conversion is
performed; the Y component of colors is written into the green channel of the
output image, Cr into the red, and Cb into the blue.

2.8 Miscellaneous Functions

2.8.1 disassemble

(disassemble addr count &key port processor)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-9

Disassemble instructions in the selected processor starting at the specified address.
The port defaults to *standard-output*. The processor defaults to &p.

2.8.2 dump

(dump &optional processor)

Dump the registers of the specified MPE. The processor defaults to &p.

2.8.3 runtime-eval

(runtime-eval expr &optional processor)

Evaluate the specified expression in the processor context. This include bindings
for *mpe* and &p as well as for each processor register (e.g. r0, r1, mdmacptr, etc.).

2.8.4 find-symbol

(find-symbol pname &optional processor)

Find the value of the named symbol. The processor defaults to &p

See also the definition of the find-symbol method of C-MPE.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 2-10

This page intentionally left blank.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 3-1

3. The Debugging Architecture

Puffin supports debugging Nuon programs by providing an abstraction of the Nuon
processor. This abstraction is presented in the form of XLISP classes. This set of
classes is separated into two major categories:

• The Chip Abstraction

• The Debugger Abstraction

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 3-2

This page intentionally left blank.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-1

4. The Chip Abstraction

The chip abstraction consists of the classes MMP and MPE.

4.1 C-MMP Class

The C-MMP class is an abstraction of the entire Nuon chip. Puffin only supports a
single instance of the C-MMP class.

4.1.1 Global Variables

• *mmp* is always set to the only instance of C-MMP

• &m is a synonym for *mmp*.

4.1.2 Methods

4.1.2.1 mpe-count

 (c-mmp ‘mpe-count)

Returns the number of MPEs associated with this C-MMP. For example:

(&m ‘mpe-count)
 è 4

4.1.2.2 mpe

 (c-mmp ‘mpe i)

Returns the ith MPE associated with this C-MMP. For example:

(&m ‘mpe 2)

è #<MPE-2>

4.1.2.3 fetch-scalar

 (c-mmp 'fetch-scalar addr)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-2

Returns the scalar at the specified address in MMP memory. MPE memory appears
as with a DMA transfer with the REMOTE bit set.

4.1.2.4 store-scalar

 (c-mmp 'store-scalar! addr value)

Stores the specified value into the specified address in MMP memory. MPE
memory appears as with a DMA transfer with the REMOTE bit set.

4.1.2.5 read-scalars-from-file

(c-mmp 'read-scalars-from-file addr count
 &optional port)

Reads scalars from the specified input port and writes them to the specified address.
The data should be in binary form in Nuon (big-endian) byte order.

4.1.2.6 write-scalars-to-file

(c-mmp 'write-scalars-to-file addr count
 &optional port)

Reads scalars from the specified address and writes them to the specified output
port. The data will be in binary form in Nuon (big-endian) byte order.

4.1.2.7 chip

(c-mmp 'start)

Returns #t if running on a real chip. It returns #f when running under the emulator
(which is not present in this release).

4.1.2.8 run-all

(c-mmp 'run-all)

Start all MPEs running. Each MPE will execute instructions when the MMP is
clocked. When debugging on actual hardware, the MMP is always being clocked.

4.1.2.9 stop-all

(c-mmp 'stop-all)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-3

Stop all MPEs from running.

4.1.2.10 reset

(c-mmp 'reset &key keep-breakpoints?)

Reset the MMP. If keep-breakpoints? is #t (which it is by default), all breakpoints
are retained. If keep-breakpoints? is #f, all breakpoints are removed.

4.1.2.11 restart

(c-mmp 'restart &key keep-breakpoints?)

Reset the MMP and keep breakpoints based on the setting of keep-breakpoints? (see
the 'reset method). After resetting the MMP, reload the last object file or the last
debugger file that was loaded.

4.1.2.12 select-processor

(c-mmp 'select-processor i)

Select the specified MPE making it the default MPE and binding it to the symbols
mpe and &p.

4.1.2.13 write-image-to-file

(c-mmp 'write-image-to-file name &optional x-size
 y-size &key base mode)

Write an image from display memory to a .PCX file.

The x-size and y-size parameters default to the display height and width. The base
defaults to the start of SDRAM and the mode defaults to *display-mode*.

4.1.2.14 write-raw-image-to-file

(c-mmp 'write-raw-image-to-file name &optional x-size
 y-size &key base mode)

Write an image from display memory to a .pcx file. The x-size and y-size parameters
default to the display height and width. The base defaults to the start of SDRAM
and the mode defaults to *display-mode*. This method differs from write-image-to-
file in that no color space conversion is performed; the Y component of colors is

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-4

written into the green channel of the output image, Cr into the red, and Cb into the
blue.

4.2 C-MPE Class

The C-MPE class is an abstraction of a single Nuon Processing Element (MPE).
There is one instance of C-MPE for each MPE on the chip or emulated chip being
debugged. The currently selected instance of C-MPE is bound to the variables &p
and *mpe*.

4.2.1 Global Variables

• *mpe* is always set to the currently selected instance of C-MPE

• &p is a synonym for &P

4.2.2 Methods

4.2.2.1 mmp

(c-mpe 'mmp)

Returns the MMP that contains this MPE.

4.2.2.2 unit-number

(c-mpe 'unit-number)

Returns the MPE unit number.

4.2.2.3 select

(c-mpe 'select)

Select this MPE setting the global variables *mpe* and &p.

4.2.2.4 pc

(c-mpe 'pc)

Return the current value of pcexec for this MPE.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-5

4.2.2.5 fp

(c-mpe 'fp)

Return the current value of the C frame pointer (r30) for this MPE.

4.2.2.6 fetch-scalar

 (c-mpe 'fetch-scalar addr)

Returns the scalar at the specified address in MPE memory.

4.2.2.7 fetch-data-scalar

(c-mpe 'fetch-data-scalar addr)

Returns the scalar at the specified address in MPE memory looking through the data
cache.

4.2.2.8 fetch-instruction-scalar

(c-mpe 'fetch-instruction-scalar addr)

Returns the scalar at the specified address in MPE memory looking through the
instruction cache.

4.2.2.9 store-scalar

(c-mpe 'store-scalar! addr value)

Stores the specified value into the specified address in MPE RAM.

4.2.2.10 store-data-scalar

(c-mpe 'store-data-scalar! addr value)

Stores the specified value into the specified address in MPE RAM looking through
the data cache.

4.2.2.11 store-instruction-scalar

(c-mpe 'store-instruction-scalar! addr value)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-6

Stores the specified value into the specified address in MPE RAM looking through
the instruction cache.

4.2.2.12 read-scalars-from-file

(c-mpe 'read-scalars-from-file addr count port)

Reads scalars from the specified input port and writes them to the specified address.
The data should be in binary form in Nuon (big-endian) byte order.

4.2.2.13 write-scalars-to-file

(c-mpe 'write-scalars-to-file addr count port)

Reads scalars from the specified address and writes them to the specified output
port. The data will be in binary form in Nuon (big-endian) byte order.

4.2.2.14 translate-data-address

(c-mpe 'translate-data-address addr)

Return the address in the data cache where the specified address is mapped. If the
specified address is not in the data cache, return #f.

4.2.2.15 translate-instruction-address

(c-mpe 'translate-instruction-address addr)

Return the address in the instruction cache where the specified address is mapped. If
the specified address is not in the instruction cache, return #f.

4.2.2.16 set-source-path

(c-mpe 'set-source-path! path)

Sets the path the debugger uses to find source files. The path should be in the form
of a list of strings naming directories where files are to be found. The directory
separator should be the forward slash (/) even on Windows 95/98 systems.

4.2.2.17 disassemble

(c-mpe 'disassemble addr count &optional port)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-7

Disassemble instructions starting at the specified address. Instructions are
disassembled and printed to the specified port until count bytes have been processed.
The default port is *standard-output*.

4.2.2.18 register-address

(c-mpe 'register-address name)

Return the address of a register.

4.2.2.19 display

(c-mpe 'display &optional stream)

Display the state of the mpe to the specified stream which defaults to *standard-
output*.

4.2.2.20 runtime-eval

(c-mpe 'runtime-eval expr)

Evaluate the specified expression within an environment where *mpe* and &p are
bound to the MPE and the MPE registers are bound to their names (r0, r1, etc.).

4.2.2.21 find-register-by-name

(c-mpe 'find-register-by-name name)

Returns the register with the specified name. The name should be a string and is
case sensitive.

4.2.2.22 find-register-by-address

(c-mpe 'find-register-by-address addr)

Return the instance of c-register associated with the register with the specified
address.

4.2.2.23 register-value

(c-mpe 'register-value name)

Return the value of the register with the specified name.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-8

4.2.2.24 set-register-value

(c-mpe 'set-register-value! name value)

Set the value of the register with the specified name.

4.2.3 Execution Control Methods

4.2.3.1 running

(c-mpe 'running?)

Return #t if the MPE is running and #f otherwise.

4.2.3.2 run

(c-mpe 'run)

Start the MPE running. Instructions will be executed each time the MPE is clocked.

4.2.3.3 step

(c-mpe 'step)

Cause the MPE to execute a single instruction.

4.2.3.4 step-over

(c-mpe 'step-over)

Cause the MPE to skip over a subroutine call.

4.2.3.5 stop

(c-mpe 'stop)

Stop the MPE from running.

4.2.3.6 wait-for-halt

(c-mpe 'wait-for-halt)

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-9

Wait for the MPE to halt after run or single step.

4.2.4 Breakpoint Methods
Breakpoints are represented by instances of the class c-breakpoint. See below for a
definition of that class.

4.2.4.1 find-breakpoint

(c-mpe 'find-breakpoint addr)

Returns the instance of c-breakpoint associated with the breakpoint at the specified
address. If there is no breakpoint at the specified address, #f is returned.

4.2.4.2 breakpoint

 (c-mpe 'breakpoint? addr)

Is there a breakpoint at the specified address? The addr parameter can be either an
address or a symbol name passed as a string. Returns true if there is a breakpoint at
the specified address and #f if not.

4.2.4.3 set-breakpoint

 (c-mpe 'set-breakpoint! addr &key condition count)

Set a breakpoint at the specified address. If the address is a symbol name, the value
of the symbol is used as the address. For example:

(&p 'set-breakpoint! "loop" :condition
 '(< (r1 'value) 2)))

This will break at the label "loop" if the value of r1 is less than 2.

4.2.4.4 clear-breakpoint

(c-mpe 'clear-breakpoint! addr)

Clear the breakpoint at the specified address. If the address is a symbol name, the
value of the symbol is used as the address.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-10

4.2.4.5 clear-all-breakpoints

 (c-mpe 'clear-all-breakpoints!)

Clear all breakpoints associated with this MPE.

4.2.4.6 map-over-breakpoints

 (c-mpe 'map-over-breakpoints fcn)

Applies the specified function to each active breakpoint passing the associated
instance of c-breakpoint as a parameter. Returns the list of function values. For
example:

(&p 'map-over-breakpoints (lambda (b) (format #t
"~%Breakpoint at ~X" (b 'address))))

This will display the address at which each of the current breakpoints is set.

4.2.4.7 show-breakpoints

 (c-mpe 'show-breakpoints)

Show all breakpoints associated with this MPE in the console window.

4.2.4.8 add-before-method

(c-mpe 'add-before-method! addr method)

Add a before method at the specified address. If the address is a symbol, the value of
the symbol is used as the address. For example:

(&p 'add-before-method! "loop" '(format #t
 "~%At start of loop"))

This will display "At start of loop" before the instruction at "loop" is executed.

4.2.4.9 remove-before-method

 (c-mpe 'remove-before-method! addr)

Remove the before method at the specified address.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-11

4.2.4.10 add-after-method

 (c-mpe 'add-after-method! addr method)

Add an after method at the specified address. If the address is a symbol, the value of
the symbol is used as the address. This method works the same as 'add-before-
method! except that the method is evalulated after the instruction is executed rather
than before.

4.2.4.11 remove-after-method

 (c-mpe 'remove-after-method! addr)

Remove the after method at the specified address.

4.2.5 Object File Access Methods

4.2.5.1 set-current-block

(c-mpe 'set-current-block! addr)

When debugging a C or C++ program, this function sets the current scope to the
block containing the specified address. Local symbols are resolved relative to this
scope.

4.2.5.2 get-local-symbol-names

(c-mpe 'get-local-symbol-names)

Get the list of local symbol names in the current scope.

4.2.5.3 find-symbol

(c-mpe 'find-symbol name)

Find a symbol in the current scope. Returns four values: the symbol value, the
overlay identifier, the storage class, and a type specifier. The overlay identifier is #f
if the symbol is not in an overlay.

Symbol Classes:

• frame for variables on the stack

• address for variables in memory

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-12

• register for variables in registers

Type Specifiers:

• void

• char

• short

• int

• long

• float

• double

• unsigned-char

• unsigned-short

• unsigned-int

• unsigned-long

• (struct tag-name)

• (union tag-name)

• (enum tag-name)

• (pointer type-specifier)

• (function type-specifier)

• (array size element-size type-specifier)

4.2.5.4 find-type

(c-mpe 'find-type name)

Find a type defined in the current scope. Returns a type specifier.

4.2.5.5 get-tag-members

(c-mpe 'get-tag-members name)

Get the structure or union members associated with the specified name. Returns a
list of tag specifiers. Each tag specifier is a list containing the name of the tag, the
byte offset from the start of the structure or union (or bit offset for bit fields), a type
specifier and a size for bit fields.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-13

4.2.5.6 get-file-reference

(c-mpe 'get-file-reference n)

Get the specified file reference. File references are number starting at zero and
continuing to the number of files minus one. Returns the filename associated with
the specified file reference number.

4.2.5.7 get-file-references

(c-mpe 'get-file-references)

Get a list of all file references. Returns a list of all referenced filenames.

4.2.5.8 find-line-number

(c-mpe 'find-line-number addr &optional offset)

Find the line number information associated with a specified address. If the offset
parameter is #t, the line number returned may be associated with an address less than
the specified address. It defaults to #f. Returns the file reference number, the line
number, the line count and the byte offset from the specified address (or #f if the
offset parameter is #f).

4.2.5.9 find-address-from-line-number

(c-mpe 'find-address-from-line-number file line)

Finds the address associated with the specified file reference number and line
number.

4.2.5.10 find-function

(c-mpe 'find-function addr)

Find the function containing the specified address. Returns the file reference number
and function name.

4.2.5.11 start-address

(c-mpe 'start-address)

Returns the start address specified in the object file.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-14

4.2.5.12 set-start-address

(c-mpe 'set-start-address! addr)

Set the start address of an MPE.

4.3 C-REGISTER Class

Instances of the C-REGISTER represent registers in the MPE.

4.3.1 Methods

4.3.1.1 name

(c-register 'name)

Return the name of a register.

4.3.1.2 address

(c-register 'address)

Return the address of the register.

4.3.1.3 value

(c-register 'value)

Return the value of the register.

4.3.1.4 set-value

(c-register 'set-value! value)

Set the value of a register.

4.4 C-BREAKPOINT Class

Instances of the c-breakpoint class represent breakpoints set in an MPE.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-15

4.4.1 Methods

4.4.1.1 address

(c-breakpoint 'address)

Return the address at which the breakpoint is set.

4.4.1.2 symbol

(c-breakpoint 'symbol)

Return the symbol used to set the breakpoint if there was one. The symbol is
returned as a string. Returns #f if no symbol was used to set the breakpoint.

4.4.1.3 breakpoint

(c-breakpoint 'breakpoint?)

Return #t if there is a user breakpoint at this address.

4.4.1.4 condition

(c-breakpoint 'condition?)

Return true if there is a condition on this breakpoint. Otherwise, return #f.

4.4.1.5 settings

(c-breakpoint 'settings)

Return a keyword/value list with the breakpoint settings.

4.4.1.6 change

(c-breakpoint 'change! &key breakpoint? condition
count
 before after)

Change the settings of the breakpoint.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 4-16

This page intentionally left blank!

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 5-1

5. Utility Functions

5.1 Fixed Point Math Operations

5.1.1.1 real->32bits

 (real->32bits value &key fracbits)

Convert a real value to a 32 bit fixed point value with the specified number of
fracbits. The fracbits parameter defaults to 16.

5.1.1.2 32bits->real

 (32bits->real value &key fracbits)

Convert a 32 bit fixed point value with the specified number of fracbits to a real.
The fracbits parameter defaults to 16.

5.1.1.3 64bits->real

 (64bits->real value-high value-low &key fracbits)

Convert a 64 bit fixed point value with the specified number of fracbits to a real.
The fracbits parameter defaults to 32.

5-MAY-99 VM LABS CONFIDENTIAL PROPRIETARY PAGE 5-2

This page intentionally left blank.

